# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from datetime import timedelta from unittest import mock import pytest import torch from torch.nn.parallel import DistributedDataParallel from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.plugins.environments import ClusterEnvironment, LightningEnvironment from pytorch_lightning.strategies import DDPStrategy from pytorch_lightning.trainer.states import TrainerFn from tests_pytorch.helpers.runif import RunIf class BoringModelGPU(BoringModel): def on_train_start(self) -> None: # make sure that the model is on GPU when training assert self.device == torch.device(f"cuda:{self.trainer.strategy.local_rank}") self.start_cuda_memory = torch.cuda.memory_allocated() @RunIf(min_cuda_gpus=2, skip_windows=True, standalone=True) def test_ddp_with_2_gpus(): """Tests if device is set correctly when training and after teardown for DDPStrategy.""" trainer = Trainer( accelerator="gpu", devices=2, strategy="ddp", fast_dev_run=True, enable_progress_bar=False, enable_model_summary=False, ) # assert strategy attributes for device setting assert isinstance(trainer.strategy, DDPStrategy) local_rank = trainer.strategy.local_rank assert trainer.strategy.root_device == torch.device(f"cuda:{local_rank}") model = BoringModelGPU() trainer.fit(model) # assert after training, model is moved to CPU and memory is deallocated assert model.device == torch.device("cpu") cuda_memory = torch.cuda.memory_allocated() assert cuda_memory < model.start_cuda_memory class BarrierModel(BoringModel): def setup(self, stage=None): assert not isinstance(self.trainer.strategy.model, DistributedDataParallel) self.trainer.strategy.barrier("barrier before model is wrapped") def on_train_start(self): assert isinstance(self.trainer.strategy.model, DistributedDataParallel) self.trainer.strategy.barrier("barrier after model is wrapped") @RunIf(min_cuda_gpus=4, standalone=True) @mock.patch("torch.distributed.barrier") def test_ddp_barrier_non_consecutive_device_ids(barrier_mock, tmpdir): """Test correct usage of barriers when device ids do not start at 0 or are not consecutive.""" model = BoringModel() gpus = [1, 3] trainer = Trainer( default_root_dir=tmpdir, max_steps=1, accelerator="gpu", devices=gpus, strategy="ddp", enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model) barrier_mock.assert_any_call(device_ids=[gpus[trainer.local_rank]]) @mock.patch.dict(os.environ, {"LOCAL_RANK": "1"}) def test_incorrect_ddp_script_spawning(tmpdir): """Test an error message when user accidentally instructs Lightning to spawn children processes on rank > 0.""" class WronglyImplementedEnvironment(LightningEnvironment): @property def creates_processes_externally(self): # returning false no matter what means Lightning would spawn also on ranks > 0 new processes return False model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, strategy="ddp", accelerator="cpu", devices=2, plugins=[WronglyImplementedEnvironment()], ) with pytest.raises( RuntimeError, match="Lightning attempted to launch new distributed processes with `local_rank > 0`." ): trainer.fit(model) @RunIf(skip_windows=True) def test_ddp_configure_ddp(): """Tests with ddp strategy.""" model = BoringModel() ddp_strategy = DDPStrategy() trainer = Trainer( max_epochs=1, strategy=ddp_strategy, ) # test wrap the model if fitting trainer.state.fn = TrainerFn.FITTING trainer.strategy.connect(model) trainer.lightning_module.trainer = trainer trainer.strategy.setup_environment() assert isinstance(trainer.model, LightningModule) trainer.strategy.setup(trainer) # in DDPStrategy configure_ddp(), model wrapped by DistributedDataParallel assert isinstance(trainer.model, DistributedDataParallel) ddp_strategy = DDPStrategy() trainer = Trainer( max_epochs=1, strategy=ddp_strategy, ) # test do not wrap the model if TrainerFn is not fitting trainer.state.fn = TrainerFn.VALIDATING trainer.strategy.connect(model) trainer.lightning_module.trainer = trainer trainer.strategy.setup_environment() trainer.strategy.setup(trainer) # in DDPStrategy configure_ddp(), model are still LightningModule assert isinstance(trainer.model, LightningModule) @RunIf(min_cuda_gpus=1) @pytest.mark.parametrize( "trainer_fn", (TrainerFn.VALIDATING, TrainerFn.TUNING, TrainerFn.TESTING, TrainerFn.PREDICTING) ) def test_ddp_dont_configure_sync_batchnorm(trainer_fn): model = BoringModelGPU() model.layer = torch.nn.BatchNorm1d(10) ddp_strategy = DDPStrategy() trainer = Trainer(accelerator="gpu", devices=1, strategy=ddp_strategy, sync_batchnorm=True) trainer.state.fn = trainer_fn trainer.strategy.connect(model) trainer.lightning_module.trainer = trainer trainer.strategy.setup_environment() assert isinstance(trainer.model, LightningModule) trainer.strategy.setup(trainer) # because TrainerFn is not FITTING, model is not configured with sync batchnorm assert not isinstance(trainer.strategy.model.layer, torch.nn.modules.batchnorm.SyncBatchNorm) class CheckOptimizerDeviceModel(BoringModel): def configure_optimizers(self): assert all(param.device.type == "cuda" for param in self.parameters()) super().configure_optimizers() @RunIf(min_cuda_gpus=1) @pytest.mark.parametrize("strategy", ("ddp", "ddp_spawn")) def test_model_parameters_on_device_for_optimizer(strategy): """Test that the strategy has moved the parameters to the device by the time the optimizer gets created.""" model = CheckOptimizerDeviceModel() trainer = Trainer( default_root_dir=os.getcwd(), fast_dev_run=1, accelerator="gpu", devices=1, strategy=strategy, ) trainer.fit(model) def test_configure_launcher_create_processes_externally(): class MyClusterEnvironment(ClusterEnvironment): @property def creates_processes_externally(self): return True @property def main_address(self): return "" @property def main_port(self): return 8080 @staticmethod def detect(): return True def world_size(self): return 1 def set_world_size(self): pass def global_rank(self): return 0 def set_global_rank(self): pass def local_rank(self): return 0 def node_rank(self): return 0 ddp_strategy = DDPStrategy(cluster_environment=MyClusterEnvironment()) assert ddp_strategy.launcher is None ddp_strategy._configure_launcher() assert ddp_strategy.launcher is None @RunIf(min_cuda_gpus=1) @mock.patch("torch.distributed.init_process_group") def test_ddp_strategy_set_timeout(mock_init_process_group): """Tests with ddp strategy.""" test_timedelta = timedelta(seconds=30) model = BoringModel() ddp_strategy = DDPStrategy(timeout=test_timedelta) trainer = Trainer( max_epochs=1, strategy=ddp_strategy, ) # test wrap the model if fitting trainer.state.fn = TrainerFn.FITTING trainer.strategy.connect(model) trainer.lightning_module.trainer = trainer trainer.strategy.setup_environment() process_group_backend = trainer.strategy._get_process_group_backend() global_rank = trainer.strategy.cluster_environment.global_rank() world_size = trainer.strategy.cluster_environment.world_size() mock_init_process_group.assert_called_with( process_group_backend, rank=global_rank, world_size=world_size, timeout=test_timedelta )