lightning/tests/trainer/test_trainer_tricks.py

331 lines
13 KiB
Python
Executable File

from copy import deepcopy
import pytest
import torch
from torch.utils.data import RandomSampler, SequentialSampler, DataLoader
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import AMPType, NATIVE_AMP_AVALAIBLE
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
from tests.base.datamodules import MNISTDataModule
def test_num_training_batches(tmpdir):
"""
Tests that the correct number of batches are allocated
"""
# when we have fewer batches in the dataloader we should use those instead of the limit
model = EvalModelTemplate()
trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1)
trainer.fit(model)
assert len(model.train_dataloader()) == 10
assert len(model.val_dataloader()) == 10
assert isinstance(trainer.num_val_batches, list)
assert trainer.num_val_batches[0] == 10
assert trainer.num_training_batches == 10
# when we have more batches in the dataloader we should limit them
model = EvalModelTemplate()
trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1)
trainer.fit(model)
assert len(model.train_dataloader()) == 10
assert len(model.val_dataloader()) == 10
assert isinstance(trainer.num_val_batches, list)
assert trainer.num_val_batches[0] == 7
assert trainer.num_training_batches == 7
def test_overfit_batch_limits(tmpdir):
# ------------------------------------------------------
# Make sure shuffle is correct across loaders initially
# ------------------------------------------------------
model = EvalModelTemplate()
model.train_dataloader()
# original train loader which should be replaced in all methods
train_loader = model.train_dataloader()
# make sure the val and tests are not shuffled
assert isinstance(train_loader.sampler, RandomSampler)
assert isinstance(model.val_dataloader().sampler, SequentialSampler)
assert isinstance(model.test_dataloader().sampler, SequentialSampler)
# ------------------------------------------------------
# get the training loader and batch
# ------------------------------------------------------
# Create a reference train dataloader without shuffling.
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=False)
(xa, ya) = next(iter(train_loader))
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=True)
full_train_samples = len(train_loader)
num_train_samples = int(0.11 * full_train_samples)
# ------------------------------------------------------
# set VAL and Test loaders
# ------------------------------------------------------
val_loader = DataLoader(model.val_dataloader().dataset, shuffle=False)
test_loader = DataLoader(model.test_dataloader().dataset, shuffle=False)
# set the model loaders
model.train_dataloader = lambda: train_loader
model.val_dataloader = lambda: val_loader
model.test_dataloader = lambda: test_loader
# ------------------------------------------------------
# test train loader applies correct limits
# ------------------------------------------------------
trainer = Trainer(overfit_batches=4)
trainer.reset_train_dataloader(model)
assert trainer.num_training_batches == 4
# make sure the loaders are the same
(xb, yb) = next(iter(trainer.train_dataloader))
assert torch.eq(xa, xb).all()
assert torch.eq(ya, yb).all()
trainer = Trainer(overfit_batches=0.11)
trainer.reset_train_dataloader(model)
# The dataloader should have been overwritten with a Sequential sampler.
assert trainer.train_dataloader is not train_loader
assert trainer.num_training_batches == num_train_samples
# make sure the loaders are the same
(xb, yb) = next(iter(trainer.train_dataloader))
assert torch.eq(xa, xb).all()
assert torch.eq(ya, yb).all()
# ------------------------------------------------------
# run tests for both val and test
# ------------------------------------------------------
for split in ['val', 'test']:
# ------------------------------------------------------
# test overfit_batches as percent
# ------------------------------------------------------
loader_num_batches, dataloaders = Trainer(overfit_batches=0.11)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == num_train_samples
# make sure we turned off shuffle for the user
assert isinstance(dataloaders[0].sampler, SequentialSampler)
# make sure the loaders are the same
(xb, yb) = next(iter(dataloaders[0]))
assert torch.eq(xa, xb).all()
assert torch.eq(ya, yb).all()
# ------------------------------------------------------
# test overfit_batches as int
# ------------------------------------------------------
loader_num_batches, dataloaders = Trainer(overfit_batches=1)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == 1
loader_num_batches, dataloaders = Trainer(overfit_batches=5)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == 5
# ------------------------------------------------------
# test limit_xxx_batches as percent AND int
# ------------------------------------------------------
if split == 'val':
loader_num_batches, dataloaders = Trainer(limit_val_batches=0.1)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == int(0.1 * len(val_loader))
loader_num_batches, dataloaders = Trainer(limit_val_batches=10)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == 10
else:
loader_num_batches, dataloaders = Trainer(limit_test_batches=0.1)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == int(0.1 * len(test_loader))
loader_num_batches, dataloaders = Trainer(limit_test_batches=10)._reset_eval_dataloader(model, split)
assert loader_num_batches[0] == 10
def test_model_reset_correctly(tmpdir):
""" Check that model weights are correctly reset after scaling batch size. """
tutils.reset_seed()
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)
before_state_dict = deepcopy(model.state_dict())
trainer.tuner.scale_batch_size(model, max_trials=5)
after_state_dict = model.state_dict()
for key in before_state_dict.keys():
assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \
'Model was not reset correctly after scaling batch size'
def test_trainer_reset_correctly(tmpdir):
""" Check that all trainer parameters are reset correctly after scaling batch size. """
tutils.reset_seed()
model = EvalModelTemplate()
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)
changed_attributes = ['max_steps',
'weights_summary',
'logger',
'callbacks',
'checkpoint_callback',
'early_stop_callback',
'limit_train_batches']
attributes_before = {}
for ca in changed_attributes:
attributes_before[ca] = getattr(trainer, ca)
trainer.tuner.scale_batch_size(model, max_trials=5)
attributes_after = {}
for ca in changed_attributes:
attributes_after[ca] = getattr(trainer, ca)
for key in changed_attributes:
assert attributes_before[key] == attributes_after[key], \
f'Attribute {key} was not reset correctly after learning rate finder'
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.parametrize('scale_arg', ['power', 'binsearch', True])
def test_auto_scale_batch_size_trainer_arg(tmpdir, scale_arg):
""" Test possible values for 'batch size auto scaling' Trainer argument. """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
before_batch_size = hparams.get('batch_size')
trainer = Trainer(default_root_dir=tmpdir,
max_epochs=1,
auto_scale_batch_size=scale_arg,
gpus=1)
trainer.tune(model)
after_batch_size = model.batch_size
assert before_batch_size != after_batch_size, \
'Batch size was not altered after running auto scaling of batch size'
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.parametrize('use_hparams', [True, False])
def test_auto_scale_batch_size_set_model_attribute(tmpdir, use_hparams):
""" Test that new batch size gets written to the correct hyperparameter attribute. """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
before_batch_size = hparams.get('batch_size')
class HparamsEvalModelTemplate(EvalModelTemplate):
def dataloader(self, *args, **kwargs):
# artificially set batch_size so we can get a dataloader
# remove it immediately after, because we want only self.hparams.batch_size
setattr(self, "batch_size", before_batch_size)
dataloader = super().dataloader(*args, **kwargs)
del self.batch_size
return dataloader
datamodule_model = MNISTDataModule(data_dir=tmpdir, batch_size=111) # this datamodule should get ignored!
datamodule_fit = MNISTDataModule(data_dir=tmpdir, batch_size=before_batch_size)
model_class = HparamsEvalModelTemplate if use_hparams else EvalModelTemplate
model = model_class(**hparams)
model.datamodule = datamodule_model # unused when another module gets passed to .tune() / .fit()
trainer = Trainer(default_root_dir=tmpdir,
max_epochs=1,
auto_scale_batch_size=True,
gpus=1)
trainer.tune(model, datamodule_fit)
after_batch_size = model.hparams.batch_size if use_hparams else model.batch_size
assert trainer.datamodule == datamodule_fit
assert before_batch_size != after_batch_size
assert after_batch_size <= len(trainer.train_dataloader.dataset)
assert datamodule_fit.batch_size == after_batch_size
# should be left unchanged, since it was not passed to .tune()
assert datamodule_model.batch_size == 111
def test_auto_scale_batch_size_duplicate_attribute_warning(tmpdir):
""" Test for a warning when model.batch_size and model.hparams.batch_size both present. """
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
model.hparams = hparams
# now we have model.batch_size and model.hparams.batch_size
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, auto_scale_batch_size=True)
expected_message = "Field `model.batch_size` and `model.hparams.batch_size` are mutually exclusive!"
with pytest.warns(UserWarning, match=expected_message):
trainer.tune(model)
@pytest.mark.parametrize('scale_method', ['power', 'binsearch'])
def test_call_to_trainer_method(tmpdir, scale_method):
""" Test that calling the trainer method itself works. """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
before_batch_size = hparams.get('batch_size')
# logger file to get meta
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
)
after_batch_size = trainer.tuner.scale_batch_size(model, mode=scale_method, max_trials=5)
model.batch_size = after_batch_size
trainer.fit(model)
assert before_batch_size != after_batch_size, \
'Batch size was not altered after running auto scaling of batch size'
def test_error_on_dataloader_passed_to_fit(tmpdir):
"""Verify that when the auto scale batch size feature raises an error
if a train dataloader is passed to fit """
# only train passed to fit
model = EvalModelTemplate()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=0.1,
limit_train_batches=0.2,
auto_scale_batch_size='power',
)
fit_options = dict(train_dataloader=model.dataloader(train=True))
with pytest.raises(MisconfigurationException):
trainer.tune(model, **fit_options)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="test requires native AMP.")
def test_auto_scale_batch_size_with_amp(tmpdir):
model = EvalModelTemplate()
batch_size_before = model.batch_size
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
auto_scale_batch_size=True,
gpus=1,
precision=16
)
trainer.tune(model)
batch_size_after = model.batch_size
assert trainer.amp_backend == AMPType.NATIVE
assert trainer.scaler is not None
assert batch_size_after != batch_size_before