331 lines
13 KiB
Python
Executable File
331 lines
13 KiB
Python
Executable File
from copy import deepcopy
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import RandomSampler, SequentialSampler, DataLoader
|
|
|
|
import tests.base.develop_utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.utilities import AMPType, NATIVE_AMP_AVALAIBLE
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.base import EvalModelTemplate
|
|
from tests.base.datamodules import MNISTDataModule
|
|
|
|
|
|
def test_num_training_batches(tmpdir):
|
|
"""
|
|
Tests that the correct number of batches are allocated
|
|
"""
|
|
# when we have fewer batches in the dataloader we should use those instead of the limit
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1)
|
|
trainer.fit(model)
|
|
|
|
assert len(model.train_dataloader()) == 10
|
|
assert len(model.val_dataloader()) == 10
|
|
assert isinstance(trainer.num_val_batches, list)
|
|
assert trainer.num_val_batches[0] == 10
|
|
assert trainer.num_training_batches == 10
|
|
|
|
# when we have more batches in the dataloader we should limit them
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1)
|
|
trainer.fit(model)
|
|
|
|
assert len(model.train_dataloader()) == 10
|
|
assert len(model.val_dataloader()) == 10
|
|
assert isinstance(trainer.num_val_batches, list)
|
|
assert trainer.num_val_batches[0] == 7
|
|
assert trainer.num_training_batches == 7
|
|
|
|
|
|
def test_overfit_batch_limits(tmpdir):
|
|
# ------------------------------------------------------
|
|
# Make sure shuffle is correct across loaders initially
|
|
# ------------------------------------------------------
|
|
model = EvalModelTemplate()
|
|
model.train_dataloader()
|
|
|
|
# original train loader which should be replaced in all methods
|
|
train_loader = model.train_dataloader()
|
|
|
|
# make sure the val and tests are not shuffled
|
|
assert isinstance(train_loader.sampler, RandomSampler)
|
|
assert isinstance(model.val_dataloader().sampler, SequentialSampler)
|
|
assert isinstance(model.test_dataloader().sampler, SequentialSampler)
|
|
|
|
# ------------------------------------------------------
|
|
# get the training loader and batch
|
|
# ------------------------------------------------------
|
|
# Create a reference train dataloader without shuffling.
|
|
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=False)
|
|
(xa, ya) = next(iter(train_loader))
|
|
train_loader = DataLoader(model.train_dataloader().dataset, shuffle=True)
|
|
full_train_samples = len(train_loader)
|
|
num_train_samples = int(0.11 * full_train_samples)
|
|
|
|
# ------------------------------------------------------
|
|
# set VAL and Test loaders
|
|
# ------------------------------------------------------
|
|
val_loader = DataLoader(model.val_dataloader().dataset, shuffle=False)
|
|
test_loader = DataLoader(model.test_dataloader().dataset, shuffle=False)
|
|
|
|
# set the model loaders
|
|
model.train_dataloader = lambda: train_loader
|
|
model.val_dataloader = lambda: val_loader
|
|
model.test_dataloader = lambda: test_loader
|
|
|
|
# ------------------------------------------------------
|
|
# test train loader applies correct limits
|
|
# ------------------------------------------------------
|
|
trainer = Trainer(overfit_batches=4)
|
|
trainer.reset_train_dataloader(model)
|
|
assert trainer.num_training_batches == 4
|
|
|
|
# make sure the loaders are the same
|
|
(xb, yb) = next(iter(trainer.train_dataloader))
|
|
assert torch.eq(xa, xb).all()
|
|
assert torch.eq(ya, yb).all()
|
|
|
|
trainer = Trainer(overfit_batches=0.11)
|
|
trainer.reset_train_dataloader(model)
|
|
# The dataloader should have been overwritten with a Sequential sampler.
|
|
assert trainer.train_dataloader is not train_loader
|
|
assert trainer.num_training_batches == num_train_samples
|
|
|
|
# make sure the loaders are the same
|
|
(xb, yb) = next(iter(trainer.train_dataloader))
|
|
assert torch.eq(xa, xb).all()
|
|
assert torch.eq(ya, yb).all()
|
|
|
|
# ------------------------------------------------------
|
|
# run tests for both val and test
|
|
# ------------------------------------------------------
|
|
for split in ['val', 'test']:
|
|
|
|
# ------------------------------------------------------
|
|
# test overfit_batches as percent
|
|
# ------------------------------------------------------
|
|
loader_num_batches, dataloaders = Trainer(overfit_batches=0.11)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == num_train_samples
|
|
|
|
# make sure we turned off shuffle for the user
|
|
assert isinstance(dataloaders[0].sampler, SequentialSampler)
|
|
|
|
# make sure the loaders are the same
|
|
(xb, yb) = next(iter(dataloaders[0]))
|
|
assert torch.eq(xa, xb).all()
|
|
assert torch.eq(ya, yb).all()
|
|
|
|
# ------------------------------------------------------
|
|
# test overfit_batches as int
|
|
# ------------------------------------------------------
|
|
loader_num_batches, dataloaders = Trainer(overfit_batches=1)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == 1
|
|
loader_num_batches, dataloaders = Trainer(overfit_batches=5)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == 5
|
|
|
|
# ------------------------------------------------------
|
|
# test limit_xxx_batches as percent AND int
|
|
# ------------------------------------------------------
|
|
if split == 'val':
|
|
loader_num_batches, dataloaders = Trainer(limit_val_batches=0.1)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == int(0.1 * len(val_loader))
|
|
|
|
loader_num_batches, dataloaders = Trainer(limit_val_batches=10)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == 10
|
|
else:
|
|
loader_num_batches, dataloaders = Trainer(limit_test_batches=0.1)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == int(0.1 * len(test_loader))
|
|
|
|
loader_num_batches, dataloaders = Trainer(limit_test_batches=10)._reset_eval_dataloader(model, split)
|
|
assert loader_num_batches[0] == 10
|
|
|
|
|
|
def test_model_reset_correctly(tmpdir):
|
|
""" Check that model weights are correctly reset after scaling batch size. """
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
before_state_dict = deepcopy(model.state_dict())
|
|
|
|
trainer.tuner.scale_batch_size(model, max_trials=5)
|
|
|
|
after_state_dict = model.state_dict()
|
|
|
|
for key in before_state_dict.keys():
|
|
assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \
|
|
'Model was not reset correctly after scaling batch size'
|
|
|
|
|
|
def test_trainer_reset_correctly(tmpdir):
|
|
""" Check that all trainer parameters are reset correctly after scaling batch size. """
|
|
tutils.reset_seed()
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
changed_attributes = ['max_steps',
|
|
'weights_summary',
|
|
'logger',
|
|
'callbacks',
|
|
'checkpoint_callback',
|
|
'early_stop_callback',
|
|
'limit_train_batches']
|
|
|
|
attributes_before = {}
|
|
for ca in changed_attributes:
|
|
attributes_before[ca] = getattr(trainer, ca)
|
|
|
|
trainer.tuner.scale_batch_size(model, max_trials=5)
|
|
|
|
attributes_after = {}
|
|
for ca in changed_attributes:
|
|
attributes_after[ca] = getattr(trainer, ca)
|
|
|
|
for key in changed_attributes:
|
|
assert attributes_before[key] == attributes_after[key], \
|
|
f'Attribute {key} was not reset correctly after learning rate finder'
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.parametrize('scale_arg', ['power', 'binsearch', True])
|
|
def test_auto_scale_batch_size_trainer_arg(tmpdir, scale_arg):
|
|
""" Test possible values for 'batch size auto scaling' Trainer argument. """
|
|
tutils.reset_seed()
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
before_batch_size = hparams.get('batch_size')
|
|
trainer = Trainer(default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
auto_scale_batch_size=scale_arg,
|
|
gpus=1)
|
|
trainer.tune(model)
|
|
after_batch_size = model.batch_size
|
|
assert before_batch_size != after_batch_size, \
|
|
'Batch size was not altered after running auto scaling of batch size'
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.parametrize('use_hparams', [True, False])
|
|
def test_auto_scale_batch_size_set_model_attribute(tmpdir, use_hparams):
|
|
""" Test that new batch size gets written to the correct hyperparameter attribute. """
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
before_batch_size = hparams.get('batch_size')
|
|
|
|
class HparamsEvalModelTemplate(EvalModelTemplate):
|
|
|
|
def dataloader(self, *args, **kwargs):
|
|
# artificially set batch_size so we can get a dataloader
|
|
# remove it immediately after, because we want only self.hparams.batch_size
|
|
setattr(self, "batch_size", before_batch_size)
|
|
dataloader = super().dataloader(*args, **kwargs)
|
|
del self.batch_size
|
|
return dataloader
|
|
|
|
datamodule_model = MNISTDataModule(data_dir=tmpdir, batch_size=111) # this datamodule should get ignored!
|
|
datamodule_fit = MNISTDataModule(data_dir=tmpdir, batch_size=before_batch_size)
|
|
|
|
model_class = HparamsEvalModelTemplate if use_hparams else EvalModelTemplate
|
|
model = model_class(**hparams)
|
|
model.datamodule = datamodule_model # unused when another module gets passed to .tune() / .fit()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
auto_scale_batch_size=True,
|
|
gpus=1)
|
|
trainer.tune(model, datamodule_fit)
|
|
after_batch_size = model.hparams.batch_size if use_hparams else model.batch_size
|
|
assert trainer.datamodule == datamodule_fit
|
|
assert before_batch_size != after_batch_size
|
|
assert after_batch_size <= len(trainer.train_dataloader.dataset)
|
|
assert datamodule_fit.batch_size == after_batch_size
|
|
# should be left unchanged, since it was not passed to .tune()
|
|
assert datamodule_model.batch_size == 111
|
|
|
|
|
|
def test_auto_scale_batch_size_duplicate_attribute_warning(tmpdir):
|
|
""" Test for a warning when model.batch_size and model.hparams.batch_size both present. """
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
model.hparams = hparams
|
|
# now we have model.batch_size and model.hparams.batch_size
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=1, auto_scale_batch_size=True)
|
|
expected_message = "Field `model.batch_size` and `model.hparams.batch_size` are mutually exclusive!"
|
|
with pytest.warns(UserWarning, match=expected_message):
|
|
trainer.tune(model)
|
|
|
|
|
|
@pytest.mark.parametrize('scale_method', ['power', 'binsearch'])
|
|
def test_call_to_trainer_method(tmpdir, scale_method):
|
|
""" Test that calling the trainer method itself works. """
|
|
tutils.reset_seed()
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
before_batch_size = hparams.get('batch_size')
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
after_batch_size = trainer.tuner.scale_batch_size(model, mode=scale_method, max_trials=5)
|
|
model.batch_size = after_batch_size
|
|
trainer.fit(model)
|
|
|
|
assert before_batch_size != after_batch_size, \
|
|
'Batch size was not altered after running auto scaling of batch size'
|
|
|
|
|
|
def test_error_on_dataloader_passed_to_fit(tmpdir):
|
|
"""Verify that when the auto scale batch size feature raises an error
|
|
if a train dataloader is passed to fit """
|
|
|
|
# only train passed to fit
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_val_batches=0.1,
|
|
limit_train_batches=0.2,
|
|
auto_scale_batch_size='power',
|
|
)
|
|
fit_options = dict(train_dataloader=model.dataloader(train=True))
|
|
|
|
with pytest.raises(MisconfigurationException):
|
|
trainer.tune(model, **fit_options)
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
@pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="test requires native AMP.")
|
|
def test_auto_scale_batch_size_with_amp(tmpdir):
|
|
model = EvalModelTemplate()
|
|
batch_size_before = model.batch_size
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_steps=1,
|
|
auto_scale_batch_size=True,
|
|
gpus=1,
|
|
precision=16
|
|
)
|
|
trainer.tune(model)
|
|
batch_size_after = model.batch_size
|
|
assert trainer.amp_backend == AMPType.NATIVE
|
|
assert trainer.scaler is not None
|
|
assert batch_size_after != batch_size_before
|