from copy import deepcopy import pytest import torch from torch.utils.data import RandomSampler, SequentialSampler, DataLoader import tests.base.develop_utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.utilities import AMPType, NATIVE_AMP_AVALAIBLE from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate from tests.base.datamodules import MNISTDataModule def test_num_training_batches(tmpdir): """ Tests that the correct number of batches are allocated """ # when we have fewer batches in the dataloader we should use those instead of the limit model = EvalModelTemplate() trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1) trainer.fit(model) assert len(model.train_dataloader()) == 10 assert len(model.val_dataloader()) == 10 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 10 assert trainer.num_training_batches == 10 # when we have more batches in the dataloader we should limit them model = EvalModelTemplate() trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1) trainer.fit(model) assert len(model.train_dataloader()) == 10 assert len(model.val_dataloader()) == 10 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 7 assert trainer.num_training_batches == 7 def test_overfit_batch_limits(tmpdir): # ------------------------------------------------------ # Make sure shuffle is correct across loaders initially # ------------------------------------------------------ model = EvalModelTemplate() model.train_dataloader() # original train loader which should be replaced in all methods train_loader = model.train_dataloader() # make sure the val and tests are not shuffled assert isinstance(train_loader.sampler, RandomSampler) assert isinstance(model.val_dataloader().sampler, SequentialSampler) assert isinstance(model.test_dataloader().sampler, SequentialSampler) # ------------------------------------------------------ # get the training loader and batch # ------------------------------------------------------ # Create a reference train dataloader without shuffling. train_loader = DataLoader(model.train_dataloader().dataset, shuffle=False) (xa, ya) = next(iter(train_loader)) train_loader = DataLoader(model.train_dataloader().dataset, shuffle=True) full_train_samples = len(train_loader) num_train_samples = int(0.11 * full_train_samples) # ------------------------------------------------------ # set VAL and Test loaders # ------------------------------------------------------ val_loader = DataLoader(model.val_dataloader().dataset, shuffle=False) test_loader = DataLoader(model.test_dataloader().dataset, shuffle=False) # set the model loaders model.train_dataloader = lambda: train_loader model.val_dataloader = lambda: val_loader model.test_dataloader = lambda: test_loader # ------------------------------------------------------ # test train loader applies correct limits # ------------------------------------------------------ trainer = Trainer(overfit_batches=4) trainer.reset_train_dataloader(model) assert trainer.num_training_batches == 4 # make sure the loaders are the same (xb, yb) = next(iter(trainer.train_dataloader)) assert torch.eq(xa, xb).all() assert torch.eq(ya, yb).all() trainer = Trainer(overfit_batches=0.11) trainer.reset_train_dataloader(model) # The dataloader should have been overwritten with a Sequential sampler. assert trainer.train_dataloader is not train_loader assert trainer.num_training_batches == num_train_samples # make sure the loaders are the same (xb, yb) = next(iter(trainer.train_dataloader)) assert torch.eq(xa, xb).all() assert torch.eq(ya, yb).all() # ------------------------------------------------------ # run tests for both val and test # ------------------------------------------------------ for split in ['val', 'test']: # ------------------------------------------------------ # test overfit_batches as percent # ------------------------------------------------------ loader_num_batches, dataloaders = Trainer(overfit_batches=0.11)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == num_train_samples # make sure we turned off shuffle for the user assert isinstance(dataloaders[0].sampler, SequentialSampler) # make sure the loaders are the same (xb, yb) = next(iter(dataloaders[0])) assert torch.eq(xa, xb).all() assert torch.eq(ya, yb).all() # ------------------------------------------------------ # test overfit_batches as int # ------------------------------------------------------ loader_num_batches, dataloaders = Trainer(overfit_batches=1)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == 1 loader_num_batches, dataloaders = Trainer(overfit_batches=5)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == 5 # ------------------------------------------------------ # test limit_xxx_batches as percent AND int # ------------------------------------------------------ if split == 'val': loader_num_batches, dataloaders = Trainer(limit_val_batches=0.1)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == int(0.1 * len(val_loader)) loader_num_batches, dataloaders = Trainer(limit_val_batches=10)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == 10 else: loader_num_batches, dataloaders = Trainer(limit_test_batches=0.1)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == int(0.1 * len(test_loader)) loader_num_batches, dataloaders = Trainer(limit_test_batches=10)._reset_eval_dataloader(model, split) assert loader_num_batches[0] == 10 def test_model_reset_correctly(tmpdir): """ Check that model weights are correctly reset after scaling batch size. """ tutils.reset_seed() model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) before_state_dict = deepcopy(model.state_dict()) trainer.tuner.scale_batch_size(model, max_trials=5) after_state_dict = model.state_dict() for key in before_state_dict.keys(): assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \ 'Model was not reset correctly after scaling batch size' def test_trainer_reset_correctly(tmpdir): """ Check that all trainer parameters are reset correctly after scaling batch size. """ tutils.reset_seed() model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) changed_attributes = ['max_steps', 'weights_summary', 'logger', 'callbacks', 'checkpoint_callback', 'early_stop_callback', 'limit_train_batches'] attributes_before = {} for ca in changed_attributes: attributes_before[ca] = getattr(trainer, ca) trainer.tuner.scale_batch_size(model, max_trials=5) attributes_after = {} for ca in changed_attributes: attributes_after[ca] = getattr(trainer, ca) for key in changed_attributes: assert attributes_before[key] == attributes_after[key], \ f'Attribute {key} was not reset correctly after learning rate finder' @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.parametrize('scale_arg', ['power', 'binsearch', True]) def test_auto_scale_batch_size_trainer_arg(tmpdir, scale_arg): """ Test possible values for 'batch size auto scaling' Trainer argument. """ tutils.reset_seed() hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_batch_size = hparams.get('batch_size') trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, auto_scale_batch_size=scale_arg, gpus=1) trainer.tune(model) after_batch_size = model.batch_size assert before_batch_size != after_batch_size, \ 'Batch size was not altered after running auto scaling of batch size' @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.parametrize('use_hparams', [True, False]) def test_auto_scale_batch_size_set_model_attribute(tmpdir, use_hparams): """ Test that new batch size gets written to the correct hyperparameter attribute. """ tutils.reset_seed() hparams = EvalModelTemplate.get_default_hparams() before_batch_size = hparams.get('batch_size') class HparamsEvalModelTemplate(EvalModelTemplate): def dataloader(self, *args, **kwargs): # artificially set batch_size so we can get a dataloader # remove it immediately after, because we want only self.hparams.batch_size setattr(self, "batch_size", before_batch_size) dataloader = super().dataloader(*args, **kwargs) del self.batch_size return dataloader datamodule_model = MNISTDataModule(data_dir=tmpdir, batch_size=111) # this datamodule should get ignored! datamodule_fit = MNISTDataModule(data_dir=tmpdir, batch_size=before_batch_size) model_class = HparamsEvalModelTemplate if use_hparams else EvalModelTemplate model = model_class(**hparams) model.datamodule = datamodule_model # unused when another module gets passed to .tune() / .fit() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, auto_scale_batch_size=True, gpus=1) trainer.tune(model, datamodule_fit) after_batch_size = model.hparams.batch_size if use_hparams else model.batch_size assert trainer.datamodule == datamodule_fit assert before_batch_size != after_batch_size assert after_batch_size <= len(trainer.train_dataloader.dataset) assert datamodule_fit.batch_size == after_batch_size # should be left unchanged, since it was not passed to .tune() assert datamodule_model.batch_size == 111 def test_auto_scale_batch_size_duplicate_attribute_warning(tmpdir): """ Test for a warning when model.batch_size and model.hparams.batch_size both present. """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) model.hparams = hparams # now we have model.batch_size and model.hparams.batch_size trainer = Trainer(default_root_dir=tmpdir, max_steps=1, auto_scale_batch_size=True) expected_message = "Field `model.batch_size` and `model.hparams.batch_size` are mutually exclusive!" with pytest.warns(UserWarning, match=expected_message): trainer.tune(model) @pytest.mark.parametrize('scale_method', ['power', 'binsearch']) def test_call_to_trainer_method(tmpdir, scale_method): """ Test that calling the trainer method itself works. """ tutils.reset_seed() hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_batch_size = hparams.get('batch_size') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) after_batch_size = trainer.tuner.scale_batch_size(model, mode=scale_method, max_trials=5) model.batch_size = after_batch_size trainer.fit(model) assert before_batch_size != after_batch_size, \ 'Batch size was not altered after running auto scaling of batch size' def test_error_on_dataloader_passed_to_fit(tmpdir): """Verify that when the auto scale batch size feature raises an error if a train dataloader is passed to fit """ # only train passed to fit model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=0.2, auto_scale_batch_size='power', ) fit_options = dict(train_dataloader=model.dataloader(train=True)) with pytest.raises(MisconfigurationException): trainer.tune(model, **fit_options) @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") @pytest.mark.skipif(not NATIVE_AMP_AVALAIBLE, reason="test requires native AMP.") def test_auto_scale_batch_size_with_amp(tmpdir): model = EvalModelTemplate() batch_size_before = model.batch_size trainer = Trainer( default_root_dir=tmpdir, max_steps=1, auto_scale_batch_size=True, gpus=1, precision=16 ) trainer.tune(model) batch_size_after = model.batch_size assert trainer.amp_backend == AMPType.NATIVE assert trainer.scaler is not None assert batch_size_after != batch_size_before