lightning/tests/trainer/test_trainer_test_loop.py

96 lines
2.6 KiB
Python

import pytest
import torch
import pytorch_lightning as pl
import tests.base.develop_utils as tutils
from tests.base import EvalModelTemplate
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_single_gpu_test(tmpdir):
tutils.set_random_master_port()
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0],
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_dp_test(tmpdir):
tutils.set_random_master_port()
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='dp',
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_ddp_spawn_test(tmpdir):
tutils.set_random_master_port()
model = EvalModelTemplate()
trainer = pl.Trainer(
default_root_dir=tmpdir,
max_epochs=2,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
)
trainer.fit(model)
assert 'ckpt' in trainer.checkpoint_callback.best_model_path
results = trainer.test()
assert 'test_acc' in results[0]
old_weights = model.c_d1.weight.clone().detach().cpu()
results = trainer.test(model)
assert 'test_acc' in results[0]
# make sure weights didn't change
new_weights = model.c_d1.weight.clone().detach().cpu()
assert torch.all(torch.eq(old_weights, new_weights))