import pytest import torch import pytorch_lightning as pl import tests.base.develop_utils as tutils from tests.base import EvalModelTemplate @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_single_gpu_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0], ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results[0] old_weights = model.c_d1.weight.clone().detach().cpu() results = trainer.test(model) assert 'test_acc' in results[0] # make sure weights didn't change new_weights = model.c_d1.weight.clone().detach().cpu() assert torch.all(torch.eq(old_weights, new_weights)) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_dp_test(tmpdir): tutils.set_random_master_port() import os os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], distributed_backend='dp', ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results[0] old_weights = model.c_d1.weight.clone().detach().cpu() results = trainer.test(model) assert 'test_acc' in results[0] # make sure weights didn't change new_weights = model.c_d1.weight.clone().detach().cpu() assert torch.all(torch.eq(old_weights, new_weights)) @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_ddp_spawn_test(tmpdir): tutils.set_random_master_port() model = EvalModelTemplate() trainer = pl.Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=10, limit_val_batches=10, gpus=[0, 1], distributed_backend='ddp_spawn', ) trainer.fit(model) assert 'ckpt' in trainer.checkpoint_callback.best_model_path results = trainer.test() assert 'test_acc' in results[0] old_weights = model.c_d1.weight.clone().detach().cpu() results = trainer.test(model) assert 'test_acc' in results[0] # make sure weights didn't change new_weights = model.c_d1.weight.clone().detach().cpu() assert torch.all(torch.eq(old_weights, new_weights))