287 lines
9.0 KiB
Python
287 lines
9.0 KiB
Python
import os
|
|
|
|
import pytest
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tests.base.develop_pipelines as tpipes
|
|
from pytorch_lightning import Trainer, seed_everything
|
|
from pytorch_lightning.accelerators import TPUBackend
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.base import EvalModelTemplate
|
|
from tests.base.datasets import TrialMNIST
|
|
from tests.base.develop_utils import pl_multi_process_test
|
|
|
|
try:
|
|
import torch_xla
|
|
import torch_xla.core.xla_model as xm
|
|
import torch_xla.distributed.xla_multiprocessing as xmp
|
|
SERIAL_EXEC = xmp.MpSerialExecutor()
|
|
except ImportError:
|
|
TPU_AVAILABLE = False
|
|
else:
|
|
TPU_AVAILABLE = True
|
|
|
|
|
|
_LARGER_DATASET = TrialMNIST(download=True, num_samples=2000, digits=(0, 1, 2, 5, 8))
|
|
|
|
|
|
# 8 cores needs a big dataset
|
|
def _serial_train_loader():
|
|
return DataLoader(_LARGER_DATASET, batch_size=32)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_tpu_cores_1(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_core', [1, 5])
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_tpu_index(tmpdir, tpu_core):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=[tpu_core],
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_tpu_cores_8(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=8,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# 8 cores needs a big dataset
|
|
model.train_dataloader = _serial_train_loader
|
|
model.val_dataloader = _serial_train_loader
|
|
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_cores_1(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_core', [1, 5])
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_index(tmpdir, tpu_core):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=[tpu_core],
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
|
|
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_cores_8(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=8,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
# 8 cores needs a big dataset
|
|
model.train_dataloader = _serial_train_loader
|
|
model.val_dataloader = _serial_train_loader
|
|
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_model_tpu_early_stop(tmpdir):
|
|
"""Test if single TPU core training works"""
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(
|
|
callbacks=[EarlyStopping()],
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=50,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
tpu_cores=1,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_tpu_grad_norm(tmpdir):
|
|
"""Test if grad_norm works on TPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
gradient_clip_val=0.1,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_dataloaders_passed_to_fit(tmpdir):
|
|
"""Test if dataloaders passed to trainer works on TPU"""
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
tpu_cores=8
|
|
)
|
|
result = trainer.fit(model, train_dataloader=model.train_dataloader(), val_dataloaders=model.val_dataloader())
|
|
assert result, "TPU doesn't work with dataloaders passed to fit()."
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
['tpu_cores', 'expected_tpu_id'],
|
|
[pytest.param(1, None), pytest.param(8, None), pytest.param([1], 1), pytest.param([8], 8)],
|
|
)
|
|
def test_tpu_id_to_be_as_expected(tpu_cores, expected_tpu_id):
|
|
"""Test if trainer.tpu_id is set as expected"""
|
|
assert Trainer(tpu_cores=tpu_cores).tpu_id == expected_tpu_id
|
|
|
|
|
|
def test_tpu_misconfiguration():
|
|
"""Test if trainer.tpu_id is set as expected"""
|
|
with pytest.raises(MisconfigurationException, match="`tpu_cores` can only be"):
|
|
Trainer(tpu_cores=[1, 8])
|
|
|
|
|
|
# @patch('pytorch_lightning.trainer.trainer.XLA_AVAILABLE', False)
|
|
@pytest.mark.skipif(TPU_AVAILABLE, reason="test requires missing TPU")
|
|
def test_exception_when_no_tpu_found(tmpdir):
|
|
"""Test if exception is thrown when xla devices are not available"""
|
|
model = EvalModelTemplate()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.2,
|
|
tpu_cores=8,
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException, match='PyTorch XLA not installed.'):
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_cores', [1, 8, [1]])
|
|
def test_distributed_backend_set_when_using_tpu(tmpdir, tpu_cores):
|
|
"""Test if distributed_backend is set to `tpu` when tpu_cores is not None"""
|
|
assert Trainer(tpu_cores=tpu_cores).distributed_backend == "tpu"
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_result_obj_on_tpu(tmpdir):
|
|
seed_everything(1234)
|
|
os.environ['PL_DEV_DEBUG'] = '1'
|
|
|
|
batches = 5
|
|
epochs = 2
|
|
|
|
model = EvalModelTemplate()
|
|
model.training_step = model.training_step_result_obj
|
|
model.training_step_end = None
|
|
model.training_epoch_end = None
|
|
model.validation_step = model.validation_step_result_obj
|
|
model.validation_step_end = None
|
|
model.validation_epoch_end = None
|
|
model.test_step = model.test_step_result_obj
|
|
model.test_step_end = None
|
|
model.test_epoch_end = None
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=epochs,
|
|
callbacks=[EarlyStopping()],
|
|
row_log_interval=2,
|
|
limit_train_batches=batches,
|
|
weights_summary=None,
|
|
tpu_cores=8
|
|
)
|
|
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine")
|
|
@pl_multi_process_test
|
|
def test_broadcast_on_tpu():
|
|
""" Checks if an object from the master process is broadcasted to other processes correctly"""
|
|
def test_broadcast(rank):
|
|
trainer = Trainer(tpu_cores=8)
|
|
backend = TPUBackend(trainer)
|
|
obj = ("ver_0.5", "logger_name", rank)
|
|
result = backend.broadcast(obj)
|
|
assert result == ("ver_0.5", "logger_name", 0)
|
|
|
|
xmp.spawn(test_broadcast, nprocs=8, start_method='fork')
|