import os import pytest from torch.utils.data import DataLoader import tests.base.develop_pipelines as tpipes from pytorch_lightning import Trainer, seed_everything from pytorch_lightning.accelerators import TPUBackend from pytorch_lightning.callbacks import EarlyStopping from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate from tests.base.datasets import TrialMNIST from tests.base.develop_utils import pl_multi_process_test try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp SERIAL_EXEC = xmp.MpSerialExecutor() except ImportError: TPU_AVAILABLE = False else: TPU_AVAILABLE = True _LARGER_DATASET = TrialMNIST(download=True, num_samples=2000, digits=(0, 1, 2, 5, 8)) # 8 cores needs a big dataset def _serial_train_loader(): return DataLoader(_LARGER_DATASET, batch_size=32) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_tpu_cores_1(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=1, limit_train_batches=0.4, limit_val_batches=0.4, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.parametrize('tpu_core', [1, 5]) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_tpu_index(tmpdir, tpu_core): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=[tpu_core], limit_train_batches=0.4, limit_val_batches=0.4, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}' @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_tpu_cores_8(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=8, limit_train_batches=0.4, limit_val_batches=0.4, ) model = EvalModelTemplate() # 8 cores needs a big dataset model.train_dataloader = _serial_train_loader model.val_dataloader = _serial_train_loader tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_16bit_tpu_cores_1(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=1, limit_train_batches=0.4, limit_val_batches=0.4, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" @pytest.mark.parametrize('tpu_core', [1, 5]) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_16bit_tpu_index(tmpdir, tpu_core): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=[tpu_core], limit_train_batches=0.4, limit_val_batches=0.2, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False) assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}' assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables" @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_16bit_tpu_cores_8(tmpdir): """Make sure model trains on TPU.""" trainer_options = dict( default_root_dir=tmpdir, precision=16, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=8, limit_train_batches=0.4, limit_val_batches=0.4, ) model = EvalModelTemplate() # 8 cores needs a big dataset model.train_dataloader = _serial_train_loader model.val_dataloader = _serial_train_loader tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_model_tpu_early_stop(tmpdir): """Test if single TPU core training works""" model = EvalModelTemplate() trainer = Trainer( callbacks=[EarlyStopping()], default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=50, limit_train_batches=10, limit_val_batches=10, tpu_cores=1, ) trainer.fit(model) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_tpu_grad_norm(tmpdir): """Test if grad_norm works on TPU.""" trainer_options = dict( default_root_dir=tmpdir, progress_bar_refresh_rate=0, max_epochs=1, tpu_cores=1, limit_train_batches=0.4, limit_val_batches=0.4, gradient_clip_val=0.1, ) model = EvalModelTemplate() tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_dataloaders_passed_to_fit(tmpdir): """Test if dataloaders passed to trainer works on TPU""" model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, tpu_cores=8 ) result = trainer.fit(model, train_dataloader=model.train_dataloader(), val_dataloaders=model.val_dataloader()) assert result, "TPU doesn't work with dataloaders passed to fit()." @pytest.mark.parametrize( ['tpu_cores', 'expected_tpu_id'], [pytest.param(1, None), pytest.param(8, None), pytest.param([1], 1), pytest.param([8], 8)], ) def test_tpu_id_to_be_as_expected(tpu_cores, expected_tpu_id): """Test if trainer.tpu_id is set as expected""" assert Trainer(tpu_cores=tpu_cores).tpu_id == expected_tpu_id def test_tpu_misconfiguration(): """Test if trainer.tpu_id is set as expected""" with pytest.raises(MisconfigurationException, match="`tpu_cores` can only be"): Trainer(tpu_cores=[1, 8]) # @patch('pytorch_lightning.trainer.trainer.XLA_AVAILABLE', False) @pytest.mark.skipif(TPU_AVAILABLE, reason="test requires missing TPU") def test_exception_when_no_tpu_found(tmpdir): """Test if exception is thrown when xla devices are not available""" model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.4, limit_val_batches=0.2, tpu_cores=8, ) with pytest.raises(MisconfigurationException, match='PyTorch XLA not installed.'): trainer.fit(model) @pytest.mark.parametrize('tpu_cores', [1, 8, [1]]) def test_distributed_backend_set_when_using_tpu(tmpdir, tpu_cores): """Test if distributed_backend is set to `tpu` when tpu_cores is not None""" assert Trainer(tpu_cores=tpu_cores).distributed_backend == "tpu" @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_result_obj_on_tpu(tmpdir): seed_everything(1234) os.environ['PL_DEV_DEBUG'] = '1' batches = 5 epochs = 2 model = EvalModelTemplate() model.training_step = model.training_step_result_obj model.training_step_end = None model.training_epoch_end = None model.validation_step = model.validation_step_result_obj model.validation_step_end = None model.validation_epoch_end = None model.test_step = model.test_step_result_obj model.test_step_end = None model.test_epoch_end = None trainer_options = dict( default_root_dir=tmpdir, max_epochs=epochs, callbacks=[EarlyStopping()], row_log_interval=2, limit_train_batches=batches, weights_summary=None, tpu_cores=8 ) tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False) @pytest.mark.skipif(not TPU_AVAILABLE, reason="test requires TPU machine") @pl_multi_process_test def test_broadcast_on_tpu(): """ Checks if an object from the master process is broadcasted to other processes correctly""" def test_broadcast(rank): trainer = Trainer(tpu_cores=8) backend = TPUBackend(trainer) obj = ("ver_0.5", "logger_name", rank) result = backend.broadcast(obj) assert result == ("ver_0.5", "logger_name", 0) xmp.spawn(test_broadcast, nprocs=8, start_method='fork')