lightning/tests/models/test_hooks.py

132 lines
4.3 KiB
Python

from unittest.mock import MagicMock
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators.gpu_backend import GPUBackend
from tests.base import EvalModelTemplate
@pytest.mark.parametrize('max_steps', [1, 2, 3])
def test_on_before_zero_grad_called(tmpdir, max_steps):
class CurrentTestModel(EvalModelTemplate):
on_before_zero_grad_called = 0
def on_before_zero_grad(self, optimizer):
self.on_before_zero_grad_called += 1
model = CurrentTestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=max_steps,
max_epochs=2,
num_sanity_val_steps=5,
)
assert 0 == model.on_before_zero_grad_called
trainer.fit(model)
assert max_steps == model.on_before_zero_grad_called
model.on_before_zero_grad_called = 0
trainer.test(model)
assert 0 == model.on_before_zero_grad_called
def test_training_epoch_end_metrics_collection(tmpdir):
""" Test that progress bar metrics also get collected at the end of an epoch. """
num_epochs = 3
class CurrentModel(EvalModelTemplate):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
output['progress_bar'].update({'step_metric': torch.tensor(-1)})
output['progress_bar'].update({'shared_metric': 100})
return output
def training_epoch_end(self, outputs):
epoch = self.current_epoch
# both scalar tensors and Python numbers are accepted
return {
'progress_bar': {
f'epoch_metric_{epoch}': torch.tensor(epoch), # add a new metric key every epoch
'shared_metric': 111,
}
}
model = CurrentModel()
trainer = Trainer(
max_epochs=num_epochs,
default_root_dir=tmpdir,
overfit_batches=2,
)
result = trainer.fit(model)
assert result == 1
metrics = trainer.progress_bar_dict
# metrics added in training step should be unchanged by epoch end method
assert metrics['step_metric'] == -1
# a metric shared in both methods gets overwritten by epoch_end
assert metrics['shared_metric'] == 111
# metrics are kept after each epoch
for i in range(num_epochs):
assert metrics[f'epoch_metric_{i}'] == i
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_transfer_batch_hook():
class CustomBatch:
def __init__(self, data):
self.samples = data[0]
self.targets = data[1]
class CurrentTestModel(EvalModelTemplate):
hook_called = False
def transfer_batch_to_device(self, data, device):
self.hook_called = True
if isinstance(data, CustomBatch):
data.samples = data.samples.to(device)
data.targets = data.targets.to(device)
else:
data = super().transfer_batch_to_device(data, device)
return data
model = CurrentTestModel()
batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long)))
trainer = Trainer(gpus=1)
trainer.accelerator_backend = GPUBackend(trainer)
# running .fit() would require us to implement custom data loaders, we mock the model reference instead
trainer.get_model = MagicMock(return_value=model)
batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0'))
expected = torch.device('cuda', 0)
assert model.hook_called
assert batch_gpu.samples.device == batch_gpu.targets.device == expected
@pytest.mark.parametrize(
'max_epochs,batch_idx_',
[(2, 5), (3, 8), (4, 12)]
)
def test_on_train_batch_start_hook(max_epochs, batch_idx_):
class CurrentModel(EvalModelTemplate):
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
if batch_idx == batch_idx_:
return -1
model = CurrentModel()
trainer = Trainer(max_epochs=max_epochs)
trainer.fit(model)
if batch_idx_ > len(model.val_dataloader()) - 1:
assert trainer.batch_idx == len(model.val_dataloader()) - 1
assert trainer.global_step == len(model.val_dataloader()) * max_epochs
else:
assert trainer.batch_idx == batch_idx_
assert trainer.global_step == (batch_idx_ + 1) * max_epochs