from unittest.mock import MagicMock import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.accelerators.gpu_backend import GPUBackend from tests.base import EvalModelTemplate @pytest.mark.parametrize('max_steps', [1, 2, 3]) def test_on_before_zero_grad_called(tmpdir, max_steps): class CurrentTestModel(EvalModelTemplate): on_before_zero_grad_called = 0 def on_before_zero_grad(self, optimizer): self.on_before_zero_grad_called += 1 model = CurrentTestModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=max_steps, max_epochs=2, num_sanity_val_steps=5, ) assert 0 == model.on_before_zero_grad_called trainer.fit(model) assert max_steps == model.on_before_zero_grad_called model.on_before_zero_grad_called = 0 trainer.test(model) assert 0 == model.on_before_zero_grad_called def test_training_epoch_end_metrics_collection(tmpdir): """ Test that progress bar metrics also get collected at the end of an epoch. """ num_epochs = 3 class CurrentModel(EvalModelTemplate): def training_step(self, *args, **kwargs): output = super().training_step(*args, **kwargs) output['progress_bar'].update({'step_metric': torch.tensor(-1)}) output['progress_bar'].update({'shared_metric': 100}) return output def training_epoch_end(self, outputs): epoch = self.current_epoch # both scalar tensors and Python numbers are accepted return { 'progress_bar': { f'epoch_metric_{epoch}': torch.tensor(epoch), # add a new metric key every epoch 'shared_metric': 111, } } model = CurrentModel() trainer = Trainer( max_epochs=num_epochs, default_root_dir=tmpdir, overfit_batches=2, ) result = trainer.fit(model) assert result == 1 metrics = trainer.progress_bar_dict # metrics added in training step should be unchanged by epoch end method assert metrics['step_metric'] == -1 # a metric shared in both methods gets overwritten by epoch_end assert metrics['shared_metric'] == 111 # metrics are kept after each epoch for i in range(num_epochs): assert metrics[f'epoch_metric_{i}'] == i @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_transfer_batch_hook(): class CustomBatch: def __init__(self, data): self.samples = data[0] self.targets = data[1] class CurrentTestModel(EvalModelTemplate): hook_called = False def transfer_batch_to_device(self, data, device): self.hook_called = True if isinstance(data, CustomBatch): data.samples = data.samples.to(device) data.targets = data.targets.to(device) else: data = super().transfer_batch_to_device(data, device) return data model = CurrentTestModel() batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long))) trainer = Trainer(gpus=1) trainer.accelerator_backend = GPUBackend(trainer) # running .fit() would require us to implement custom data loaders, we mock the model reference instead trainer.get_model = MagicMock(return_value=model) batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) expected = torch.device('cuda', 0) assert model.hook_called assert batch_gpu.samples.device == batch_gpu.targets.device == expected @pytest.mark.parametrize( 'max_epochs,batch_idx_', [(2, 5), (3, 8), (4, 12)] ) def test_on_train_batch_start_hook(max_epochs, batch_idx_): class CurrentModel(EvalModelTemplate): def on_train_batch_start(self, batch, batch_idx, dataloader_idx): if batch_idx == batch_idx_: return -1 model = CurrentModel() trainer = Trainer(max_epochs=max_epochs) trainer.fit(model) if batch_idx_ > len(model.val_dataloader()) - 1: assert trainer.batch_idx == len(model.val_dataloader()) - 1 assert trainer.global_step == len(model.val_dataloader()) * max_epochs else: assert trainer.batch_idx == batch_idx_ assert trainer.global_step == (batch_idx_ + 1) * max_epochs