89 lines
3.6 KiB
Python
89 lines
3.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Callable, Union
|
|
|
|
from torch.nn import Module
|
|
from torch.optim import LBFGS, Optimizer
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
|
|
from pytorch_lightning.utilities import GradClipAlgorithmType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
from pytorch_lightning.utilities.warnings import WarningCache
|
|
|
|
warning_cache = WarningCache()
|
|
|
|
|
|
class IPUPrecisionPlugin(PrecisionPlugin):
|
|
"""Precision plugin for IPU integration.
|
|
|
|
Raises:
|
|
ValueError:
|
|
If the precision is neither 16 nor 32.
|
|
"""
|
|
|
|
def __init__(self, precision: int) -> None:
|
|
supported_precision_values = (16, 32)
|
|
if precision not in supported_precision_values:
|
|
raise ValueError(
|
|
f"`Trainer(accelerator='ipu', precision={precision!r})` is not supported."
|
|
f" `precision` must be one of: {supported_precision_values}."
|
|
)
|
|
super().__init__()
|
|
self.precision = precision
|
|
|
|
def backward(self, model: "pl.LightningModule", *args: Any, **kwargs: Any) -> None:
|
|
if is_overridden("backward", model):
|
|
warning_cache.warn(
|
|
"You have overridden the `LightningModule.backward` hook but it will be ignored since IPUs handle"
|
|
" the backward logic internally."
|
|
)
|
|
|
|
def optimizer_step(
|
|
self,
|
|
model: Union["pl.LightningModule", Module],
|
|
optimizer: Optimizer,
|
|
optimizer_idx: int,
|
|
closure: Callable[[], Any],
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
"""IPUs handle the optimizer step internally."""
|
|
if isinstance(optimizer, LBFGS):
|
|
raise MisconfigurationException(
|
|
f"IPUs and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})."
|
|
)
|
|
closure_result = closure()
|
|
self._after_closure(model, optimizer, optimizer_idx)
|
|
skipped_backward = closure_result is None
|
|
# in manual optimization, the closure does not return a value
|
|
if isinstance(model, pl.LightningModule) and model.automatic_optimization and skipped_backward:
|
|
# we lack coverage here and IPUs are (currently) limited - something to explore if there's demand
|
|
raise MisconfigurationException(
|
|
"Skipping backward by returning `None` from your `training_step` is not implemented for IPUs."
|
|
" Please, open an issue in `https://github.com/PyTorchLightning/pytorch-lightning/issues`"
|
|
" requesting this feature."
|
|
)
|
|
return closure_result
|
|
|
|
def clip_gradients(
|
|
self,
|
|
optimizer: Optimizer,
|
|
clip_val: Union[int, float] = 0.0,
|
|
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
|
|
) -> None:
|
|
if clip_val <= 0:
|
|
return
|
|
raise MisconfigurationException("IPUs currently do not support clipping gradients.")
|