# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Union from torch.nn import Module from torch.optim import LBFGS, Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin from pytorch_lightning.utilities import GradClipAlgorithmType from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.model_helpers import is_overridden from pytorch_lightning.utilities.warnings import WarningCache warning_cache = WarningCache() class IPUPrecisionPlugin(PrecisionPlugin): """Precision plugin for IPU integration. Raises: ValueError: If the precision is neither 16 nor 32. """ def __init__(self, precision: int) -> None: supported_precision_values = (16, 32) if precision not in supported_precision_values: raise ValueError( f"`Trainer(accelerator='ipu', precision={precision!r})` is not supported." f" `precision` must be one of: {supported_precision_values}." ) super().__init__() self.precision = precision def backward(self, model: "pl.LightningModule", *args: Any, **kwargs: Any) -> None: if is_overridden("backward", model): warning_cache.warn( "You have overridden the `LightningModule.backward` hook but it will be ignored since IPUs handle" " the backward logic internally." ) def optimizer_step( self, model: Union["pl.LightningModule", Module], optimizer: Optimizer, optimizer_idx: int, closure: Callable[[], Any], **kwargs: Any, ) -> Any: """IPUs handle the optimizer step internally.""" if isinstance(optimizer, LBFGS): raise MisconfigurationException( f"IPUs and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})." ) closure_result = closure() self._after_closure(model, optimizer, optimizer_idx) skipped_backward = closure_result is None # in manual optimization, the closure does not return a value if isinstance(model, pl.LightningModule) and model.automatic_optimization and skipped_backward: # we lack coverage here and IPUs are (currently) limited - something to explore if there's demand raise MisconfigurationException( "Skipping backward by returning `None` from your `training_step` is not implemented for IPUs." " Please, open an issue in `https://github.com/PyTorchLightning/pytorch-lightning/issues`" " requesting this feature." ) return closure_result def clip_gradients( self, optimizer: Optimizer, clip_val: Union[int, float] = 0.0, gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, ) -> None: if clip_val <= 0: return raise MisconfigurationException("IPUs currently do not support clipping gradients.")