lightning/tests/loggers/test_tensorboard.py

335 lines
11 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import operator
import os
from argparse import Namespace
from unittest import mock
import numpy as np
import pytest
import torch
import yaml
from omegaconf import OmegaConf
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.imports import _compare_version
from tests.helpers import BoringModel
@pytest.mark.skipif(
_compare_version("tensorboard", operator.ge, "2.6.0"), reason="cannot import EventAccumulator in >= 2.6.0"
)
def test_tensorboard_hparams_reload(tmpdir):
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
class CustomModel(BoringModel):
def __init__(self, b1=0.5, b2=0.999):
super().__init__()
self.save_hyperparameters()
trainer = Trainer(max_steps=1, default_root_dir=tmpdir)
model = CustomModel()
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
assert trainer.log_dir == trainer.logger.log_dir
folder_path = trainer.log_dir
# make sure yaml is there
with open(os.path.join(folder_path, "hparams.yaml")) as file:
# The FullLoader parameter handles the conversion from YAML
# scalar values to Python the dictionary format
yaml_params = yaml.safe_load(file)
assert yaml_params["b1"] == 0.5
assert yaml_params["b2"] == 0.999
assert len(yaml_params.keys()) == 2
# verify artifacts
assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1
# verify tb logs
event_acc = EventAccumulator(folder_path)
event_acc.Reload()
hparams_data = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric'
assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.plugin_name == "hparams"
assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.content == hparams_data
def test_tensorboard_automatic_versioning(tmpdir):
"""Verify that automatic versioning works."""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning")
assert logger.version == 2
def test_tensorboard_manual_versioning(tmpdir):
"""Verify that manual versioning works."""
root_dir = tmpdir / "tb_versioning"
root_dir.mkdir()
(root_dir / "version_0").mkdir()
(root_dir / "version_1").mkdir()
(root_dir / "version_2").mkdir()
logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1)
assert logger.version == 1
def test_tensorboard_named_version(tmpdir):
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402'."""
name = "tb_versioning"
(tmpdir / name).mkdir()
expected_version = "2020-02-05-162402"
logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.version == expected_version
assert os.listdir(tmpdir / name) == [expected_version]
assert os.listdir(tmpdir / name / expected_version)
@pytest.mark.parametrize("name", ["", None])
def test_tensorboard_no_name(tmpdir, name):
"""Verify that None or empty name works."""
logger = TensorBoardLogger(save_dir=tmpdir, name=name)
logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written
assert logger.root_dir == tmpdir
assert os.listdir(tmpdir / "version_0")
@mock.patch.dict(os.environ, {})
def test_tensorboard_log_sub_dir(tmpdir):
class TestLogger(TensorBoardLogger):
# for reproducibility
@property
def version(self):
return "version"
@property
def name(self):
return "name"
trainer_args = dict(default_root_dir=tmpdir, max_steps=1)
# no sub_dir specified
save_dir = tmpdir / "logs"
logger = TestLogger(save_dir)
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version")
# sub_dir specified
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version", "sub_dir")
# test home dir (`~`) handling
save_dir = "~/tmp"
explicit_save_dir = os.path.expanduser(save_dir)
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir")
# test env var (`$`) handling
test_env_dir = "some_directory"
os.environ["test_env_dir"] = test_env_dir
save_dir = "$test_env_dir/tmp"
explicit_save_dir = f"{test_env_dir}/tmp"
logger = TestLogger(save_dir, sub_dir="sub_dir")
trainer = Trainer(**trainer_args, logger=logger)
assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir")
@pytest.mark.parametrize("step_idx", [10, None])
def test_tensorboard_log_metrics(tmpdir, step_idx):
logger = TensorBoardLogger(tmpdir)
metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)}
logger.log_metrics(metrics, step_idx)
def test_tensorboard_log_hyperparams(tmpdir):
logger = TensorBoardLogger(tmpdir)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
"tensor": torch.empty(2, 2, 2),
"array": np.empty([2, 2, 2]),
}
logger.log_hyperparams(hparams)
def test_tensorboard_log_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
"namespace": Namespace(foo=Namespace(bar="buzz")),
"layer": torch.nn.BatchNorm1d,
"tensor": torch.empty(2, 2, 2),
"array": np.empty([2, 2, 2]),
}
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir):
logger = TensorBoardLogger(tmpdir, default_hp_metric=False)
hparams = {
"float": 0.3,
"int": 1,
"string": "abc",
"bool": True,
"dict": {"a": {"b": "c"}},
"list": [1, 2, 3],
# "namespace": Namespace(foo=Namespace(bar="buzz")),
# "layer": torch.nn.BatchNorm1d,
}
hparams = OmegaConf.create(hparams)
metrics = {"abc": torch.tensor([0.54])}
logger.log_hyperparams(hparams, metrics)
@pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)])
def test_tensorboard_log_graph(tmpdir, example_input_array):
"""test that log graph works with both model.example_input_array and if array is passed externaly."""
model = BoringModel()
if example_input_array is not None:
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
logger.log_graph(model, example_input_array)
def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir):
"""test that log graph throws warning if model.example_input_array is None."""
model = BoringModel()
model.example_input_array = None
logger = TensorBoardLogger(tmpdir, log_graph=True)
with pytest.warns(
UserWarning,
match="Could not log computational graph since the `model.example_input_array`"
" attribute is not set or `input_array` was not given",
):
logger.log_graph(model)
@mock.patch("pytorch_lightning.loggers.TensorBoardLogger.log_metrics")
def test_tensorboard_with_accummulated_gradients(mock_log_metrics, tmpdir):
"""Tests to ensure that tensorboard log properly when accumulated_gradients > 1."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.indexes = []
def training_step(self, *args):
self.log("foo", 1, on_step=True, on_epoch=True)
if not self.trainer.fit_loop._should_accumulate():
if self.trainer.logger_connector.should_update_logs:
self.indexes.append(self.trainer.global_step)
return super().training_step(*args)
model = TestModel()
model.training_epoch_end = None
logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False)
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=12,
limit_val_batches=0,
max_epochs=3,
accumulate_grad_batches=2,
logger=[logger_0],
log_every_n_steps=3,
)
trainer.fit(model)
calls = [m[2] for m in mock_log_metrics.mock_calls]
count_epochs = [c["step"] for c in calls if "foo_epoch" in c["metrics"]]
assert count_epochs == [5, 11, 17]
count_steps = [c["step"] for c in calls if "foo_step" in c["metrics"]]
assert count_steps == model.indexes
@mock.patch("pytorch_lightning.loggers.tensorboard.SummaryWriter")
def test_tensorboard_finalize(summary_writer, tmpdir):
"""Test that the SummaryWriter closes in finalize."""
logger = TensorBoardLogger(save_dir=tmpdir)
logger.finalize("any")
summary_writer().flush.assert_called()
summary_writer().close.assert_called()
def test_tensorboard_save_hparams_to_yaml_once(tmpdir):
model = BoringModel()
logger = TensorBoardLogger(save_dir=tmpdir, default_hp_metric=False)
trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=logger)
assert trainer.log_dir == trainer.logger.log_dir
trainer.fit(model)
hparams_file = "hparams.yaml"
assert os.path.isfile(os.path.join(trainer.log_dir, hparams_file))
assert not os.path.isfile(os.path.join(tmpdir, hparams_file))
@mock.patch("pytorch_lightning.loggers.tensorboard.log")
def test_tensorboard_with_symlink(log, tmpdir):
"""Tests a specific failure case when tensorboard logger is used with empty name, symbolic link ``save_dir``,
and relative paths."""
os.chdir(tmpdir) # need to use relative paths
source = os.path.join(".", "lightning_logs")
dest = os.path.join(".", "sym_lightning_logs")
os.makedirs(source, exist_ok=True)
os.symlink(source, dest)
logger = TensorBoardLogger(save_dir=dest, name="")
_ = logger.version
log.warning.assert_not_called()
def test_tensorboard_missing_folder_warning(tmpdir, caplog):
"""Verify that the logger throws a warning for invalid directory."""
name = "fake_dir"
logger = TensorBoardLogger(save_dir=tmpdir, name=name)
with caplog.at_level(logging.WARNING):
assert logger.version == 0
assert "Missing logger folder:" in caplog.text