# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import operator import os from argparse import Namespace from unittest import mock import numpy as np import pytest import torch import yaml from omegaconf import OmegaConf from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.utilities.imports import _compare_version from tests.helpers import BoringModel @pytest.mark.skipif( _compare_version("tensorboard", operator.ge, "2.6.0"), reason="cannot import EventAccumulator in >= 2.6.0" ) def test_tensorboard_hparams_reload(tmpdir): from tensorboard.backend.event_processing.event_accumulator import EventAccumulator class CustomModel(BoringModel): def __init__(self, b1=0.5, b2=0.999): super().__init__() self.save_hyperparameters() trainer = Trainer(max_steps=1, default_root_dir=tmpdir) model = CustomModel() assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) assert trainer.log_dir == trainer.logger.log_dir folder_path = trainer.log_dir # make sure yaml is there with open(os.path.join(folder_path, "hparams.yaml")) as file: # The FullLoader parameter handles the conversion from YAML # scalar values to Python the dictionary format yaml_params = yaml.safe_load(file) assert yaml_params["b1"] == 0.5 assert yaml_params["b2"] == 0.999 assert len(yaml_params.keys()) == 2 # verify artifacts assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1 # verify tb logs event_acc = EventAccumulator(folder_path) event_acc.Reload() hparams_data = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric' assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.plugin_name == "hparams" assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.content == hparams_data def test_tensorboard_automatic_versioning(tmpdir): """Verify that automatic versioning works.""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning") assert logger.version == 2 def test_tensorboard_manual_versioning(tmpdir): """Verify that manual versioning works.""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() (root_dir / "version_2").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1) assert logger.version == 1 def test_tensorboard_named_version(tmpdir): """Verify that manual versioning works for string versions, e.g. '2020-02-05-162402'.""" name = "tb_versioning" (tmpdir / name).mkdir() expected_version = "2020-02-05-162402" logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.version == expected_version assert os.listdir(tmpdir / name) == [expected_version] assert os.listdir(tmpdir / name / expected_version) @pytest.mark.parametrize("name", ["", None]) def test_tensorboard_no_name(tmpdir, name): """Verify that None or empty name works.""" logger = TensorBoardLogger(save_dir=tmpdir, name=name) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.root_dir == tmpdir assert os.listdir(tmpdir / "version_0") @mock.patch.dict(os.environ, {}) def test_tensorboard_log_sub_dir(tmpdir): class TestLogger(TensorBoardLogger): # for reproducibility @property def version(self): return "version" @property def name(self): return "name" trainer_args = dict(default_root_dir=tmpdir, max_steps=1) # no sub_dir specified save_dir = tmpdir / "logs" logger = TestLogger(save_dir) trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version") # sub_dir specified logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version", "sub_dir") # test home dir (`~`) handling save_dir = "~/tmp" explicit_save_dir = os.path.expanduser(save_dir) logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") # test env var (`$`) handling test_env_dir = "some_directory" os.environ["test_env_dir"] = test_env_dir save_dir = "$test_env_dir/tmp" explicit_save_dir = f"{test_env_dir}/tmp" logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") @pytest.mark.parametrize("step_idx", [10, None]) def test_tensorboard_log_metrics(tmpdir, step_idx): logger = TensorBoardLogger(tmpdir) metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)} logger.log_metrics(metrics, step_idx) def test_tensorboard_log_hyperparams(tmpdir): logger = TensorBoardLogger(tmpdir) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, "tensor": torch.empty(2, 2, 2), "array": np.empty([2, 2, 2]), } logger.log_hyperparams(hparams) def test_tensorboard_log_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, "tensor": torch.empty(2, 2, 2), "array": np.empty([2, 2, 2]), } metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], # "namespace": Namespace(foo=Namespace(bar="buzz")), # "layer": torch.nn.BatchNorm1d, } hparams = OmegaConf.create(hparams) metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) @pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)]) def test_tensorboard_log_graph(tmpdir, example_input_array): """test that log graph works with both model.example_input_array and if array is passed externaly.""" model = BoringModel() if example_input_array is not None: model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) logger.log_graph(model, example_input_array) def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir): """test that log graph throws warning if model.example_input_array is None.""" model = BoringModel() model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) with pytest.warns( UserWarning, match="Could not log computational graph since the `model.example_input_array`" " attribute is not set or `input_array` was not given", ): logger.log_graph(model) @mock.patch("pytorch_lightning.loggers.TensorBoardLogger.log_metrics") def test_tensorboard_with_accummulated_gradients(mock_log_metrics, tmpdir): """Tests to ensure that tensorboard log properly when accumulated_gradients > 1.""" class TestModel(BoringModel): def __init__(self): super().__init__() self.indexes = [] def training_step(self, *args): self.log("foo", 1, on_step=True, on_epoch=True) if not self.trainer.fit_loop._should_accumulate(): if self.trainer.logger_connector.should_update_logs: self.indexes.append(self.trainer.global_step) return super().training_step(*args) model = TestModel() model.training_epoch_end = None logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False) trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=12, limit_val_batches=0, max_epochs=3, accumulate_grad_batches=2, logger=[logger_0], log_every_n_steps=3, ) trainer.fit(model) calls = [m[2] for m in mock_log_metrics.mock_calls] count_epochs = [c["step"] for c in calls if "foo_epoch" in c["metrics"]] assert count_epochs == [5, 11, 17] count_steps = [c["step"] for c in calls if "foo_step" in c["metrics"]] assert count_steps == model.indexes @mock.patch("pytorch_lightning.loggers.tensorboard.SummaryWriter") def test_tensorboard_finalize(summary_writer, tmpdir): """Test that the SummaryWriter closes in finalize.""" logger = TensorBoardLogger(save_dir=tmpdir) logger.finalize("any") summary_writer().flush.assert_called() summary_writer().close.assert_called() def test_tensorboard_save_hparams_to_yaml_once(tmpdir): model = BoringModel() logger = TensorBoardLogger(save_dir=tmpdir, default_hp_metric=False) trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=logger) assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) hparams_file = "hparams.yaml" assert os.path.isfile(os.path.join(trainer.log_dir, hparams_file)) assert not os.path.isfile(os.path.join(tmpdir, hparams_file)) @mock.patch("pytorch_lightning.loggers.tensorboard.log") def test_tensorboard_with_symlink(log, tmpdir): """Tests a specific failure case when tensorboard logger is used with empty name, symbolic link ``save_dir``, and relative paths.""" os.chdir(tmpdir) # need to use relative paths source = os.path.join(".", "lightning_logs") dest = os.path.join(".", "sym_lightning_logs") os.makedirs(source, exist_ok=True) os.symlink(source, dest) logger = TensorBoardLogger(save_dir=dest, name="") _ = logger.version log.warning.assert_not_called() def test_tensorboard_missing_folder_warning(tmpdir, caplog): """Verify that the logger throws a warning for invalid directory.""" name = "fake_dir" logger = TensorBoardLogger(save_dir=tmpdir, name=name) with caplog.at_level(logging.WARNING): assert logger.version == 0 assert "Missing logger folder:" in caplog.text