lightning/tests/tests_pytorch/trainer/flags/test_limit_batches.py

104 lines
3.7 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import pytest
from lightning.pytorch import Trainer
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.trainer.states import TrainerFn
def test_num_dataloader_batches(tmpdir):
"""Tests that the correct number of batches are allocated."""
# when we have fewer batches in the dataloader we should use those instead of the limit
model = BoringModel()
trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1, default_root_dir=tmpdir)
trainer.fit(model)
assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert isinstance(trainer.num_val_batches, list)
assert trainer.num_val_batches[0] == 64
assert trainer.num_training_batches == 64
# when we have more batches in the dataloader we should limit them
model = BoringModel()
trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1, default_root_dir=tmpdir)
trainer.fit(model)
assert len(model.train_dataloader()) == 64
assert len(model.val_dataloader()) == 64
assert isinstance(trainer.num_val_batches, list)
assert trainer.num_val_batches[0] == 7
assert trainer.num_training_batches == 7
@pytest.mark.parametrize(
"mode",
[
"val",
"test",
"predict",
],
)
@pytest.mark.parametrize("limit_batches", [0.1, 10])
def test_eval_limit_batches(mode, limit_batches):
limit_eval_batches = f"limit_{mode}_batches"
dl_hook = f"{mode}_dataloader"
model = BoringModel()
eval_loader = getattr(model, dl_hook)()
trainer = Trainer(**{limit_eval_batches: limit_batches})
model.trainer = trainer
trainer.strategy.connect(model)
trainer._data_connector.attach_dataloaders(model)
if mode == "val":
trainer.validate_loop.setup_data()
trainer.state.fn = TrainerFn.VALIDATING
loader_num_batches = trainer.num_val_batches
dataloaders = trainer.val_dataloaders
elif mode == "test":
trainer.test_loop.setup_data()
loader_num_batches = trainer.num_test_batches
dataloaders = trainer.test_dataloaders
elif mode == "predict":
trainer.predict_loop.setup_data()
loader_num_batches = trainer.num_predict_batches
dataloaders = trainer.predict_dataloaders
expected_batches = int(limit_batches * len(eval_loader)) if isinstance(limit_batches, float) else limit_batches
assert loader_num_batches[0] == expected_batches
assert len(dataloaders) == len(eval_loader)
@pytest.mark.parametrize(
"argument",
["limit_train_batches", "limit_val_batches", "limit_test_batches", "limit_predict_batches", "overfit_batches"],
)
@pytest.mark.parametrize("value", [1, 1.0])
def test_limit_batches_info_message(caplog, argument, value):
with caplog.at_level(logging.INFO):
Trainer(**{argument: value})
assert f"`Trainer({argument}={value})` was configured" in caplog.text
message = f"configured so {'1' if isinstance(value, int) else '100%'}"
assert message in caplog.text
caplog.clear()
# the message should not appear by default
with caplog.at_level(logging.INFO):
Trainer()
assert message not in caplog.text