# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pytest from lightning.pytorch import Trainer from lightning.pytorch.demos.boring_classes import BoringModel from lightning.pytorch.trainer.states import TrainerFn def test_num_dataloader_batches(tmpdir): """Tests that the correct number of batches are allocated.""" # when we have fewer batches in the dataloader we should use those instead of the limit model = BoringModel() trainer = Trainer(limit_val_batches=100, limit_train_batches=100, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 64 assert trainer.num_training_batches == 64 # when we have more batches in the dataloader we should limit them model = BoringModel() trainer = Trainer(limit_val_batches=7, limit_train_batches=7, max_epochs=1, default_root_dir=tmpdir) trainer.fit(model) assert len(model.train_dataloader()) == 64 assert len(model.val_dataloader()) == 64 assert isinstance(trainer.num_val_batches, list) assert trainer.num_val_batches[0] == 7 assert trainer.num_training_batches == 7 @pytest.mark.parametrize( "mode", [ "val", "test", "predict", ], ) @pytest.mark.parametrize("limit_batches", [0.1, 10]) def test_eval_limit_batches(mode, limit_batches): limit_eval_batches = f"limit_{mode}_batches" dl_hook = f"{mode}_dataloader" model = BoringModel() eval_loader = getattr(model, dl_hook)() trainer = Trainer(**{limit_eval_batches: limit_batches}) model.trainer = trainer trainer.strategy.connect(model) trainer._data_connector.attach_dataloaders(model) if mode == "val": trainer.validate_loop.setup_data() trainer.state.fn = TrainerFn.VALIDATING loader_num_batches = trainer.num_val_batches dataloaders = trainer.val_dataloaders elif mode == "test": trainer.test_loop.setup_data() loader_num_batches = trainer.num_test_batches dataloaders = trainer.test_dataloaders elif mode == "predict": trainer.predict_loop.setup_data() loader_num_batches = trainer.num_predict_batches dataloaders = trainer.predict_dataloaders expected_batches = int(limit_batches * len(eval_loader)) if isinstance(limit_batches, float) else limit_batches assert loader_num_batches[0] == expected_batches assert len(dataloaders) == len(eval_loader) @pytest.mark.parametrize( "argument", ["limit_train_batches", "limit_val_batches", "limit_test_batches", "limit_predict_batches", "overfit_batches"], ) @pytest.mark.parametrize("value", [1, 1.0]) def test_limit_batches_info_message(caplog, argument, value): with caplog.at_level(logging.INFO): Trainer(**{argument: value}) assert f"`Trainer({argument}={value})` was configured" in caplog.text message = f"configured so {'1' if isinstance(value, int) else '100%'}" assert message in caplog.text caplog.clear() # the message should not appear by default with caplog.at_level(logging.INFO): Trainer() assert message not in caplog.text