lightning/pl_examples/basic_examples
Jirka Borovec 94a9d3d283
Update examples - use DataModule (#4740)
* rename

* add mnist_datamodule.py

* dm

* fix

* imports

* clean

* imports

* transforms

* skip
2020-11-20 23:40:40 +05:30
..
README.md Add Dali MNIST example (#3721) 2020-11-06 14:53:46 +00:00
__init__.py changes examples to pl_examples for name connflict 2019-10-19 00:41:17 +02:00
autoencoder.py Update examples - use DataModule (#4740) 2020-11-20 23:40:40 +05:30
backbone_image_classifier.py Update examples - use DataModule (#4740) 2020-11-20 23:40:40 +05:30
dali_image_classifier.py Update examples - use DataModule (#4740) 2020-11-20 23:40:40 +05:30
mnist_datamodule.py Update examples - use DataModule (#4740) 2020-11-20 23:40:40 +05:30
simple_image_classifier.py Update examples - use DataModule (#4740) 2020-11-20 23:40:40 +05:30
submit_ddp2_job.sh Rename distributed_backend to accelerator in examples (#4657) 2020-11-15 15:47:14 +01:00
submit_ddp_job.sh Rename distributed_backend to accelerator in examples (#4657) 2020-11-15 15:47:14 +01:00

README.md

Basic Examples

Use these examples to test how lightning works.

MNIST

Trains MNIST where the model is defined inside the LightningModule.

# cpu
python mnist.py

# gpus (any number)
python mnist.py

# dataparallel
python mnist.py --gpus 2 --distributed_backend 'dp'

MNIST with DALI

The MNIST example above using NVIDIA DALI. Requires NVIDIA DALI to be installed based on your CUDA version, see here.

python mnist_dali.py

Image classifier

Generic image classifier with an arbitrary backbone (ie: a simple system)

# cpu
python image_classifier.py

# gpus (any number)
python image_classifier.py --gpus 2

# dataparallel
python image_classifier.py --gpus 2 --distributed_backend 'dp'

Autoencoder

Showing the power of a system... arbitrarily complex training loops

# cpu
python autoencoder.py

# gpus (any number)
python autoencoder.py --gpus 2

# dataparallel
python autoencoder.py --gpus 2 --distributed_backend 'dp'

Multi-node example

This demo launches a job using 2 GPUs on 2 different nodes (4 GPUs total). To run this demo do the following:

  1. Log into the jumphost node of your SLURM-managed cluster.
  2. Create a conda environment with Lightning and a GPU PyTorch version.
  3. Choose a script to submit

DDP

Submit this job to run with DistributedDataParallel (2 nodes, 2 gpus each)

sbatch submit_ddp_job.sh YourEnv

DDP2

Submit this job to run with a different implementation of DistributedDataParallel. In this version, each node acts like DataParallel but syncs across nodes like DDP.

sbatch submit_ddp2_job.sh YourEnv