Add Dali MNIST example (#3721)

* add MNIST DALI example, update README.md

* Fix PEP8 warnings

* reformatted using black

* add mnist_dali to test_examples.py

* Add documentation as docstrings

* add nvidia-pyindex and nvidia-dali-cuda100

* replace nvidia-pyindex with --extra-index-url

* mark mnist_dali test as Linux and GPU only

* adjust CUDA docker and examples.txt, fix import error in test_examples.py

* adjust the GPU check

* Exit when DALI is not available

* remove requirements-examples.txt and DALI pip install

* Refactored example, moved to new logging api, added runtime check for test and dali script

* Patch to reflect the mnist example module

* add req.

* Apply suggestions from code review

* Removed requirement as it breaks CPU install, added note in README to install DALI

* add DALI to Drone

* test examples

* Apply suggestions from code review

* imports

* ABC

* cuda

* cuda

* pip DALI

* Move build into init function

Co-authored-by: SeanNaren <sean@grid.ai>
Co-authored-by: Jirka Borovec <jirka@pytorchlightning.ai>
Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Sean Naren <sean.narenthiran@gmail.com>
This commit is contained in:
Indrayana Rustandi 2020-11-06 09:53:46 -05:00 committed by GitHub
parent f3dfb98444
commit 6e5f232f5c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 249 additions and 10 deletions

View File

@ -32,6 +32,8 @@ steps:
- pip --version
- nvidia-smi
- pip install -r ./requirements/devel.txt --upgrade-strategy only-if-needed -v --no-cache-dir
# when Image has defined CUDa version we can switch to this package spec "nvidia-dali-cuda${CUDA_VERSION%%.*}0"
- pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda100 --upgrade-strategy only-if-needed
- pip list
- coverage run --source pytorch_lightning -m pytest pytorch_lightning tests -v --color=yes --durations=25 # --flake8
- python -m pytest benchmarks pl_examples -v --color=yes --maxfail=2 --durations=0 # --flake8

View File

@ -14,7 +14,15 @@ python mnist.py
python mnist.py --gpus 2 --distributed_backend 'dp'
```
---
---
#### MNIST with DALI
The MNIST example above using [NVIDIA DALI](https://developer.nvidia.com/DALI).
Requires NVIDIA DALI to be installed based on your CUDA version, see [here](https://docs.nvidia.com/deeplearning/dali/user-guide/docs/installation.html).
```bash
python mnist_dali.py
```
---
#### Image classifier
Generic image classifier with an arbitrary backbone (ie: a simple system)
```bash

View File

@ -0,0 +1,204 @@
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from argparse import ArgumentParser
from random import shuffle
from warnings import warn
import numpy as np
import torch
from torch.nn import functional as F
from torch.utils.data import random_split
import pytorch_lightning as pl
try:
from torchvision.datasets.mnist import MNIST
from torchvision import transforms
except Exception:
from tests.base.datasets import MNIST
try:
import nvidia.dali.ops as ops
import nvidia.dali.types as types
from nvidia.dali.pipeline import Pipeline
from nvidia.dali.plugin.pytorch import DALIClassificationIterator
except (ImportError, ModuleNotFoundError):
warn('NVIDIA DALI is not available')
ops, types, Pipeline, DALIClassificationIterator = ..., ..., ABC, ABC
class ExternalMNISTInputIterator(object):
"""
This iterator class wraps torchvision's MNIST dataset and returns the images and labels in batches
"""
def __init__(self, mnist_ds, batch_size):
self.batch_size = batch_size
self.mnist_ds = mnist_ds
self.indices = list(range(len(self.mnist_ds)))
shuffle(self.indices)
def __iter__(self):
self.i = 0
self.n = len(self.mnist_ds)
return self
def __next__(self):
batch = []
labels = []
for _ in range(self.batch_size):
index = self.indices[self.i]
img, label = self.mnist_ds[index]
batch.append(img.numpy())
labels.append(np.array([label], dtype=np.uint8))
self.i = (self.i + 1) % self.n
return (batch, labels)
class ExternalSourcePipeline(Pipeline):
"""
This DALI pipeline class just contains the MNIST iterator
"""
def __init__(self, batch_size, eii, num_threads, device_id):
super(ExternalSourcePipeline, self).__init__(batch_size, num_threads, device_id, seed=12)
self.source = ops.ExternalSource(source=eii, num_outputs=2)
self.build()
def define_graph(self):
images, labels = self.source()
return images, labels
class DALIClassificationLoader(DALIClassificationIterator):
"""
This class extends DALI's original DALIClassificationIterator with the __len__() function so that we can call len() on it
"""
def __init__(
self,
pipelines,
size=-1,
reader_name=None,
auto_reset=False,
fill_last_batch=True,
dynamic_shape=False,
last_batch_padded=False,
):
super().__init__(pipelines, size, reader_name, auto_reset, fill_last_batch, dynamic_shape, last_batch_padded)
def __len__(self):
batch_count = self._size // (self._num_gpus * self.batch_size)
last_batch = 1 if self._fill_last_batch else 0
return batch_count + last_batch
class LitClassifier(pl.LightningModule):
def __init__(self, hidden_dim=128, learning_rate=1e-3):
super().__init__()
self.save_hyperparameters()
self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim)
self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = torch.relu(self.l1(x))
x = torch.relu(self.l2(x))
return x
def split_batch(self, batch):
return batch[0]["data"], batch[0]["label"].squeeze().long()
def training_step(self, batch, batch_idx):
x, y = self.split_batch(batch)
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return loss
def validation_step(self, batch, batch_idx):
x, y = self.split_batch(batch)
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log('valid_loss', loss)
def test_step(self, batch, batch_idx):
x, y = self.split_batch(batch)
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log('test_loss', loss)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
@staticmethod
def add_model_specific_args(parent_parser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--hidden_dim', type=int, default=128)
parser.add_argument('--learning_rate', type=float, default=0.0001)
return parser
def cli_main():
pl.seed_everything(1234)
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--batch_size', default=32, type=int)
parser = pl.Trainer.add_argparse_args(parser)
parser = LitClassifier.add_model_specific_args(parser)
args = parser.parse_args()
# ------------
# data
# ------------
dataset = MNIST('', train=True, download=True, transform=transforms.ToTensor())
mnist_test = MNIST('', train=False, download=True, transform=transforms.ToTensor())
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
eii_train = ExternalMNISTInputIterator(mnist_train, args.batch_size)
eii_val = ExternalMNISTInputIterator(mnist_val, args.batch_size)
eii_test = ExternalMNISTInputIterator(mnist_test, args.batch_size)
pipe_train = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_train, num_threads=2, device_id=0)
train_loader = DALIClassificationLoader(pipe_train, size=len(mnist_train), auto_reset=True, fill_last_batch=False)
pipe_val = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_val, num_threads=2, device_id=0)
val_loader = DALIClassificationLoader(pipe_val, size=len(mnist_val), auto_reset=True, fill_last_batch=False)
pipe_test = ExternalSourcePipeline(batch_size=args.batch_size, eii=eii_test, num_threads=2, device_id=0)
test_loader = DALIClassificationLoader(pipe_test, size=len(mnist_test), auto_reset=True, fill_last_batch=False)
# ------------
# model
# ------------
model = LitClassifier(args.hidden_dim, args.learning_rate)
# ------------
# training
# ------------
trainer = pl.Trainer.from_argparse_args(args)
trainer.fit(model, train_loader, val_loader)
# ------------
# testing
# ------------
trainer.test(test_dataloaders=test_loader)
if __name__ == "__main__":
cli_main()

View File

@ -1,6 +1,15 @@
import platform
from unittest import mock
import torch
import pytest
import torch
try:
from nvidia.dali import ops, types, pipeline, plugin
except (ImportError, ModuleNotFoundError):
DALI_AVAILABLE = False
else:
DALI_AVAILABLE = True
dp_16_args = """
--max_epochs 1 \
@ -28,7 +37,7 @@ ddp_args = """
--precision 16 \
"""
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [dp_16_args])
# def test_examples_dp_mnist(cli_args):
@ -38,6 +47,7 @@ ddp_args = """
# cli_main()
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [dp_16_args])
# def test_examples_dp_image_classifier(cli_args):
@ -45,8 +55,9 @@ ddp_args = """
#
# with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
# cli_main()
#
#
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [dp_16_args])
# def test_examples_dp_autoencoder(cli_args):
@ -56,6 +67,7 @@ ddp_args = """
# cli_main()
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [ddp_args])
# def test_examples_ddp_mnist(cli_args):
@ -63,8 +75,9 @@ ddp_args = """
#
# with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
# cli_main()
#
#
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [ddp_args])
# def test_examples_ddp_image_classifier(cli_args):
@ -72,8 +85,9 @@ ddp_args = """
#
# with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
# cli_main()
#
#
# TODO
# @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
# @pytest.mark.parametrize('cli_args', [ddp_args])
# def test_examples_ddp_autoencoder(cli_args):
@ -92,3 +106,14 @@ def test_examples_cpu(cli_args):
for cli_cmd in [mnist_cli, ic_cli, ae_cli]:
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
cli_cmd()
@pytest.mark.skipif(not DALI_AVAILABLE, reason="Nvidia DALI required")
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
@pytest.mark.skipif(platform.system() != 'Linux', reason='Only applies to Linux platform.')
@pytest.mark.parametrize('cli_args', [cpu_args])
def test_examples_mnist_dali(cli_args):
from pl_examples.basic_examples.mnist_dali import cli_main
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args.strip().split()):
cli_main()

View File

@ -1,2 +1,2 @@
torchvision>=0.4.1,<0.9.0
gym>=0.17.0
gym>=0.17.0