lightning/tests/loggers/test_base.py

293 lines
9.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
from argparse import Namespace
from typing import Optional
from unittest.mock import MagicMock, patch
import numpy as np
import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection, TensorBoardLogger
from pytorch_lightning.loggers.base import DummyExperiment, DummyLogger
from pytorch_lightning.utilities import rank_zero_only
from tests.helpers import BoringModel
def test_logger_collection():
mock1 = MagicMock()
mock2 = MagicMock()
logger = LoggerCollection([mock1, mock2])
assert logger[0] == mock1
assert logger[1] == mock2
assert logger.experiment[0] == mock1.experiment
assert logger.experiment[1] == mock2.experiment
assert logger.save_dir is None
logger.update_agg_funcs({"test": np.mean}, np.sum)
mock1.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum)
mock2.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum)
logger.agg_and_log_metrics({"test": 2.0}, 4)
mock1.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4)
mock2.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4)
logger.close()
mock1.close.assert_called_once()
mock2.close.assert_called_once()
class CustomLogger(LightningLoggerBase):
def __init__(self):
super().__init__()
self.hparams_logged = None
self.metrics_logged = {}
self.finalized = False
self.after_save_checkpoint_called = False
@property
def experiment(self):
return "test"
@rank_zero_only
def log_hyperparams(self, params):
self.hparams_logged = params
@rank_zero_only
def log_metrics(self, metrics, step):
self.metrics_logged = metrics
@rank_zero_only
def finalize(self, status):
self.finalized_status = status
@property
def save_dir(self) -> Optional[str]:
"""
Return the root directory where experiment logs get saved, or `None` if the logger does not
save data locally.
"""
return None
@property
def name(self):
return "name"
@property
def version(self):
return "1"
def after_save_checkpoint(self, checkpoint_callback):
self.after_save_checkpoint_called = True
def test_custom_logger(tmpdir):
class CustomModel(BoringModel):
def training_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log("train_loss", loss)
return {"loss": loss}
logger = CustomLogger()
model = CustomModel()
trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=logger, default_root_dir=tmpdir)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert logger.hparams_logged == model.hparams
assert logger.metrics_logged != {}
assert logger.after_save_checkpoint_called
assert logger.finalized_status == "success"
def test_multiple_loggers(tmpdir):
class CustomModel(BoringModel):
def training_step(self, batch, batch_idx):
output = self.layer(batch)
loss = self.loss(batch, output)
self.log("train_loss", loss)
return {"loss": loss}
model = CustomModel()
logger1 = CustomLogger()
logger2 = CustomLogger()
trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=[logger1, logger2], default_root_dir=tmpdir)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
assert logger1.hparams_logged == model.hparams
assert logger1.metrics_logged != {}
assert logger1.finalized_status == "success"
assert logger2.hparams_logged == model.hparams
assert logger2.metrics_logged != {}
assert logger2.finalized_status == "success"
def test_multiple_loggers_pickle(tmpdir):
"""Verify that pickling trainer with multiple loggers works."""
logger1 = CustomLogger()
logger2 = CustomLogger()
trainer = Trainer(logger=[logger1, logger2])
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0}, 0)
assert trainer2.logger[0].metrics_logged == {"acc": 1.0}
assert trainer2.logger[1].metrics_logged == {"acc": 1.0}
def test_adding_step_key(tmpdir):
class CustomTensorBoardLogger(TensorBoardLogger):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.logged_step = 0
def log_metrics(self, metrics, step):
if "val_acc" in metrics:
assert step == self.logged_step
super().log_metrics(metrics, step)
class CustomModel(BoringModel):
def training_epoch_end(self, outputs):
self.logger.logged_step += 1
self.log_dict({"step": self.logger.logged_step, "train_acc": self.logger.logged_step / 10})
def validation_epoch_end(self, outputs):
self.logger.logged_step += 1
self.log_dict({"step": self.logger.logged_step, "val_acc": self.logger.logged_step / 10})
model = CustomModel()
trainer = Trainer(
max_epochs=3,
logger=CustomTensorBoardLogger(save_dir=tmpdir),
default_root_dir=tmpdir,
limit_train_batches=0.1,
limit_val_batches=0.1,
num_sanity_val_steps=0,
)
trainer.fit(model)
def test_with_accumulate_grad_batches():
"""Checks if the logging is performed once for `accumulate_grad_batches` steps."""
class StoreHistoryLogger(CustomLogger):
def __init__(self):
super().__init__()
self.history = {}
@rank_zero_only
def log_metrics(self, metrics, step):
if step not in self.history:
self.history[step] = {}
self.history[step].update(metrics)
logger = StoreHistoryLogger()
np.random.seed(42)
for i, loss in enumerate(np.random.random(10)):
logger.agg_and_log_metrics({"loss": loss}, step=int(i / 5))
assert logger.history == {0: {"loss": 0.5623850983416314}}
logger.close()
assert logger.history == {0: {"loss": 0.5623850983416314}, 1: {"loss": 0.4778883735637184}}
def test_dummyexperiment_support_indexing():
"""Test that the DummyExperiment can imitate indexing the experiment in a LoggerCollection."""
experiment = DummyExperiment()
assert experiment[0] == experiment
def test_dummylogger_support_indexing():
"""Test that the DummyLogger can imitate indexing of a LoggerCollection."""
logger = DummyLogger()
assert logger[0] == logger
def test_dummylogger_noop_method_calls():
"""Test that the DummyLogger methods can be called with arbitrary arguments."""
logger = DummyLogger()
logger.log_hyperparams("1", 2, three="three")
logger.log_metrics("1", 2, three="three")
def test_np_sanitization():
class CustomParamsLogger(CustomLogger):
def __init__(self):
super().__init__()
self.logged_params = None
@rank_zero_only
def log_hyperparams(self, params):
params = self._convert_params(params)
params = self._sanitize_params(params)
self.logged_params = params
logger = CustomParamsLogger()
np_params = {
"np.bool_": np.bool_(1),
"np.byte": np.byte(2),
"np.intc": np.intc(3),
"np.int_": np.int_(4),
"np.longlong": np.longlong(5),
"np.single": np.single(6.0),
"np.double": np.double(8.9),
"np.csingle": np.csingle(7 + 2j),
"np.cdouble": np.cdouble(9 + 4j),
}
sanitized_params = {
"np.bool_": True,
"np.byte": 2,
"np.intc": 3,
"np.int_": 4,
"np.longlong": 5,
"np.single": 6.0,
"np.double": 8.9,
"np.csingle": "(7+2j)",
"np.cdouble": "(9+4j)",
}
logger.log_hyperparams(Namespace(**np_params))
assert logger.logged_params == sanitized_params
@pytest.mark.parametrize("logger", [True, False])
@patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_hyperparams")
def test_log_hyperparams_being_called(log_hyperparams_mock, tmpdir, logger):
class TestModel(BoringModel):
def __init__(self, param_one, param_two):
super().__init__()
self.save_hyperparameters(logger=logger)
model = TestModel("pytorch", "lightning")
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0
)
trainer.fit(model)
if logger:
log_hyperparams_mock.assert_called()
else:
log_hyperparams_mock.assert_not_called()