# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from argparse import Namespace from typing import Optional from unittest.mock import MagicMock, patch import numpy as np import pytest from pytorch_lightning import Trainer from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection, TensorBoardLogger from pytorch_lightning.loggers.base import DummyExperiment, DummyLogger from pytorch_lightning.utilities import rank_zero_only from tests.helpers import BoringModel def test_logger_collection(): mock1 = MagicMock() mock2 = MagicMock() logger = LoggerCollection([mock1, mock2]) assert logger[0] == mock1 assert logger[1] == mock2 assert logger.experiment[0] == mock1.experiment assert logger.experiment[1] == mock2.experiment assert logger.save_dir is None logger.update_agg_funcs({"test": np.mean}, np.sum) mock1.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum) mock2.update_agg_funcs.assert_called_once_with({"test": np.mean}, np.sum) logger.agg_and_log_metrics({"test": 2.0}, 4) mock1.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4) mock2.agg_and_log_metrics.assert_called_once_with({"test": 2.0}, 4) logger.close() mock1.close.assert_called_once() mock2.close.assert_called_once() class CustomLogger(LightningLoggerBase): def __init__(self): super().__init__() self.hparams_logged = None self.metrics_logged = {} self.finalized = False self.after_save_checkpoint_called = False @property def experiment(self): return "test" @rank_zero_only def log_hyperparams(self, params): self.hparams_logged = params @rank_zero_only def log_metrics(self, metrics, step): self.metrics_logged = metrics @rank_zero_only def finalize(self, status): self.finalized_status = status @property def save_dir(self) -> Optional[str]: """ Return the root directory where experiment logs get saved, or `None` if the logger does not save data locally. """ return None @property def name(self): return "name" @property def version(self): return "1" def after_save_checkpoint(self, checkpoint_callback): self.after_save_checkpoint_called = True def test_custom_logger(tmpdir): class CustomModel(BoringModel): def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log("train_loss", loss) return {"loss": loss} logger = CustomLogger() model = CustomModel() trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=logger, default_root_dir=tmpdir) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert logger.hparams_logged == model.hparams assert logger.metrics_logged != {} assert logger.after_save_checkpoint_called assert logger.finalized_status == "success" def test_multiple_loggers(tmpdir): class CustomModel(BoringModel): def training_step(self, batch, batch_idx): output = self.layer(batch) loss = self.loss(batch, output) self.log("train_loss", loss) return {"loss": loss} model = CustomModel() logger1 = CustomLogger() logger2 = CustomLogger() trainer = Trainer(max_steps=2, log_every_n_steps=1, logger=[logger1, logger2], default_root_dir=tmpdir) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert logger1.hparams_logged == model.hparams assert logger1.metrics_logged != {} assert logger1.finalized_status == "success" assert logger2.hparams_logged == model.hparams assert logger2.metrics_logged != {} assert logger2.finalized_status == "success" def test_multiple_loggers_pickle(tmpdir): """Verify that pickling trainer with multiple loggers works.""" logger1 = CustomLogger() logger2 = CustomLogger() trainer = Trainer(logger=[logger1, logger2]) pkl_bytes = pickle.dumps(trainer) trainer2 = pickle.loads(pkl_bytes) trainer2.logger.log_metrics({"acc": 1.0}, 0) assert trainer2.logger[0].metrics_logged == {"acc": 1.0} assert trainer2.logger[1].metrics_logged == {"acc": 1.0} def test_adding_step_key(tmpdir): class CustomTensorBoardLogger(TensorBoardLogger): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.logged_step = 0 def log_metrics(self, metrics, step): if "val_acc" in metrics: assert step == self.logged_step super().log_metrics(metrics, step) class CustomModel(BoringModel): def training_epoch_end(self, outputs): self.logger.logged_step += 1 self.log_dict({"step": self.logger.logged_step, "train_acc": self.logger.logged_step / 10}) def validation_epoch_end(self, outputs): self.logger.logged_step += 1 self.log_dict({"step": self.logger.logged_step, "val_acc": self.logger.logged_step / 10}) model = CustomModel() trainer = Trainer( max_epochs=3, logger=CustomTensorBoardLogger(save_dir=tmpdir), default_root_dir=tmpdir, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0, ) trainer.fit(model) def test_with_accumulate_grad_batches(): """Checks if the logging is performed once for `accumulate_grad_batches` steps.""" class StoreHistoryLogger(CustomLogger): def __init__(self): super().__init__() self.history = {} @rank_zero_only def log_metrics(self, metrics, step): if step not in self.history: self.history[step] = {} self.history[step].update(metrics) logger = StoreHistoryLogger() np.random.seed(42) for i, loss in enumerate(np.random.random(10)): logger.agg_and_log_metrics({"loss": loss}, step=int(i / 5)) assert logger.history == {0: {"loss": 0.5623850983416314}} logger.close() assert logger.history == {0: {"loss": 0.5623850983416314}, 1: {"loss": 0.4778883735637184}} def test_dummyexperiment_support_indexing(): """Test that the DummyExperiment can imitate indexing the experiment in a LoggerCollection.""" experiment = DummyExperiment() assert experiment[0] == experiment def test_dummylogger_support_indexing(): """Test that the DummyLogger can imitate indexing of a LoggerCollection.""" logger = DummyLogger() assert logger[0] == logger def test_dummylogger_noop_method_calls(): """Test that the DummyLogger methods can be called with arbitrary arguments.""" logger = DummyLogger() logger.log_hyperparams("1", 2, three="three") logger.log_metrics("1", 2, three="three") def test_np_sanitization(): class CustomParamsLogger(CustomLogger): def __init__(self): super().__init__() self.logged_params = None @rank_zero_only def log_hyperparams(self, params): params = self._convert_params(params) params = self._sanitize_params(params) self.logged_params = params logger = CustomParamsLogger() np_params = { "np.bool_": np.bool_(1), "np.byte": np.byte(2), "np.intc": np.intc(3), "np.int_": np.int_(4), "np.longlong": np.longlong(5), "np.single": np.single(6.0), "np.double": np.double(8.9), "np.csingle": np.csingle(7 + 2j), "np.cdouble": np.cdouble(9 + 4j), } sanitized_params = { "np.bool_": True, "np.byte": 2, "np.intc": 3, "np.int_": 4, "np.longlong": 5, "np.single": 6.0, "np.double": 8.9, "np.csingle": "(7+2j)", "np.cdouble": "(9+4j)", } logger.log_hyperparams(Namespace(**np_params)) assert logger.logged_params == sanitized_params @pytest.mark.parametrize("logger", [True, False]) @patch("pytorch_lightning.loggers.tensorboard.TensorBoardLogger.log_hyperparams") def test_log_hyperparams_being_called(log_hyperparams_mock, tmpdir, logger): class TestModel(BoringModel): def __init__(self, param_one, param_two): super().__init__() self.save_hyperparameters(logger=logger) model = TestModel("pytorch", "lightning") trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.1, limit_val_batches=0.1, num_sanity_val_steps=0 ) trainer.fit(model) if logger: log_hyperparams_mock.assert_called() else: log_hyperparams_mock.assert_not_called()