lightning/examples/app_server/app.py

43 lines
1.3 KiB
Python

# !pip install torchvision pydantic
import base64
import io
import torch
import torchvision
from PIL import Image
from pydantic import BaseModel
import lightning as L
from lightning.app.components.serve import Image as InputImage
from lightning.app.components.serve import PythonServer
class PyTorchServer(PythonServer):
def setup(self):
self._model = torchvision.models.resnet18(pretrained=True)
self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._model.to(self._device)
def predict(self, request):
image = base64.b64decode(request.image.encode("utf-8"))
image = Image.open(io.BytesIO(image))
transforms = torchvision.transforms.Compose(
[
torchvision.transforms.Resize(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image = transforms(image)
image = image.to(self._device)
prediction = self._model(image.unsqueeze(0))
return {"prediction": prediction.argmax().item()}
class OutputData(BaseModel):
prediction: int
component = PyTorchServer(input_type=InputImage, output_type=OutputData, cloud_compute=L.CloudCompute("gpu"))
app = L.LightningApp(component)