lightning/examples
Kaushik B 2b61c92ceb
Fix the `examples/app_dag` App (#14359)
* Fix app dag example
* Add test
* Update doc
* Update tests/tests_app_examples/test_app_dag.py

Co-authored-by: Sherin Thomas <sherin@grid.ai>
2022-11-22 09:39:44 +01:00
..
app_argparse Add --app_args support from the CLI (#13625) 2022-07-15 19:12:40 +01:00
app_boring [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_commands_and_api [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_components [App] Reduce import depths and add test (#15330) 2022-10-28 13:57:35 +00:00
app_dag Fix the `examples/app_dag` App (#14359) 2022-11-22 09:39:44 +01:00
app_drive [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_hpo [App] Reduce import depths and add test (#15330) 2022-10-28 13:57:35 +00:00
app_installation_commands Fix: App comment command execution sequencing (#15615) 2022-11-10 07:43:04 -05:00
app_justpy Add JustPy Frontend (#15002) 2022-10-27 11:48:26 -04:00
app_layout [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_mount [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_multi_node [App] Fix multi-node pytorch example CI (#15753) 2022-11-21 16:02:30 +00:00
app_payload [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_pickle_or_not Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_server Sample datatype for Serve Component (#15623) 2022-11-10 14:39:36 -05:00
app_template_streamlit_ui [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_v0 [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_works_on_default_machine [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
lite Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
pl_basics Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
pl_bug_report
pl_domain_templates Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
pl_fault_tolerant
pl_hpu Promote the CLI out of utilities (#13767) 2022-07-23 12:07:29 +00:00
pl_integrations Promote the CLI out of utilities (#13767) 2022-07-23 12:07:29 +00:00
pl_ipu
pl_loops Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
pl_servable_module Use TorchVision's Multi-weight Support and Model Registration API on Lightning (#14567) 2022-09-09 20:04:57 +00:00
README.md Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
run_lite_examples.sh Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
run_pl_examples.sh Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
test_pl_examples.py

README.md

Examples

Our most robust examples showing all sorts of implementations can be found in our sister library Lightning Bolts.


Note that some examples may rely on new features that are only available in the development branch and may be incompatible with any releases. If you see any errors, you might want to consider switching to a version tag you would like to run examples with. For example, if you're using pytorch-lightning==1.6.4 in your environment and seeing issues, run examples of the tag 1.6.4.


Lightning Lite Examples

We show how to accelerate your PyTorch code with Lightning Lite with minimal code changes. You stay in full control of the training loop.


Lightning Trainer Examples

In this folder, we have 2 simple examples that showcase the power of the Lightning Trainer.


Domain Examples

This folder contains older examples. You should instead use the examples in Lightning Bolts for advanced use cases.


Basic Examples

In this folder, we have 1 simple example:


Loop examples

Contains implementations leveraging loop customization to enhance the Trainer with new optimization routines.

  • K-fold Cross Validation Loop: Implementation of cross validation in a loop and special datamodule.
  • Yield Loop: Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers.