lightning/tests/deprecated_api/test_remove_1-3.py

142 lines
6.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test deprecated functionality which will be removed in vX.Y.Z"""
from argparse import ArgumentParser
from unittest import mock
import pytest
import torch
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.profiler.profilers import PassThroughProfiler, SimpleProfiler
def test_v1_3_0_deprecated_arguments(tmpdir):
with pytest.deprecated_call(match='will no longer be supported in v1.3'):
callback = ModelCheckpoint()
Trainer(checkpoint_callback=callback, callbacks=[], default_root_dir=tmpdir)
# Deprecate prefix
with pytest.deprecated_call(match='will be removed in v1.3'):
ModelCheckpoint(prefix='temp')
# Deprecate auto mode
with pytest.deprecated_call(match='will be removed in v1.3'):
ModelCheckpoint(mode='auto')
with pytest.deprecated_call(match='will be removed in v1.3'):
EarlyStopping(mode='auto')
with pytest.deprecated_call(match="The setter for self.hparams in LightningModule is deprecated"):
class DeprecatedHparamsModel(LightningModule):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
DeprecatedHparamsModel({})
def test_v1_3_0_deprecated_metrics():
from pytorch_lightning.metrics.functional.classification import to_onehot
with pytest.deprecated_call(match='will be removed in v1.3'):
to_onehot(torch.tensor([1, 2, 3]))
from pytorch_lightning.metrics.functional.classification import to_categorical
with pytest.deprecated_call(match='will be removed in v1.3'):
to_categorical(torch.tensor([[0.2, 0.5], [0.9, 0.1]]))
from pytorch_lightning.metrics.functional.classification import get_num_classes
with pytest.deprecated_call(match='will be removed in v1.3'):
get_num_classes(pred=torch.tensor([0, 1]), target=torch.tensor([1, 1]))
x_binary = torch.tensor([0, 1, 2, 3])
y_binary = torch.tensor([0, 1, 2, 3])
from pytorch_lightning.metrics.functional.classification import roc
with pytest.deprecated_call(match='will be removed in v1.3'):
roc(pred=x_binary, target=y_binary)
from pytorch_lightning.metrics.functional.classification import _roc
with pytest.deprecated_call(match='will be removed in v1.3'):
_roc(pred=x_binary, target=y_binary)
x_multy = torch.tensor([[0.85, 0.05, 0.05, 0.05],
[0.05, 0.85, 0.05, 0.05],
[0.05, 0.05, 0.85, 0.05],
[0.05, 0.05, 0.05, 0.85]])
y_multy = torch.tensor([0, 1, 3, 2])
from pytorch_lightning.metrics.functional.classification import multiclass_roc
with pytest.deprecated_call(match='will be removed in v1.3'):
multiclass_roc(pred=x_multy, target=y_multy)
from pytorch_lightning.metrics.functional.classification import average_precision
with pytest.deprecated_call(match='will be removed in v1.3'):
average_precision(pred=x_binary, target=y_binary)
from pytorch_lightning.metrics.functional.classification import precision_recall_curve
with pytest.deprecated_call(match='will be removed in v1.3'):
precision_recall_curve(pred=x_binary, target=y_binary)
from pytorch_lightning.metrics.functional.classification import multiclass_precision_recall_curve
with pytest.deprecated_call(match='will be removed in v1.3'):
multiclass_precision_recall_curve(pred=x_multy, target=y_multy)
from pytorch_lightning.metrics.functional.reduction import reduce
with pytest.deprecated_call(match='will be removed in v1.3'):
reduce(torch.tensor([0, 1, 1, 0]), 'sum')
from pytorch_lightning.metrics.functional.reduction import class_reduce
with pytest.deprecated_call(match='will be removed in v1.3'):
class_reduce(torch.randint(1, 10, (50,)).float(),
torch.randint(10, 20, (50,)).float(),
torch.randint(1, 100, (50,)).float())
# TODO: remove bool from Trainer.profiler param in v1.3.0, update profiler_connector.py
@pytest.mark.parametrize(['profiler', 'expected'], [
(True, SimpleProfiler),
(False, PassThroughProfiler),
])
def test_trainer_profiler_remove_in_v1_3_0(profiler, expected):
# remove bool from Trainer.profiler param in v1.3.0, update profiler_connector.py
with pytest.deprecated_call(match='will be removed in v1.3'):
trainer = Trainer(profiler=profiler)
assert isinstance(trainer.profiler, expected)
@pytest.mark.parametrize(
['cli_args', 'expected_parsed_arg', 'expected_profiler'],
[
('--profiler', True, SimpleProfiler),
('--profiler True', True, SimpleProfiler),
('--profiler False', False, PassThroughProfiler),
],
)
def test_v1_3_0_trainer_cli_profiler(cli_args, expected_parsed_arg, expected_profiler):
cli_args = cli_args.split(' ')
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
parser = ArgumentParser(add_help=False)
parser = Trainer.add_argparse_args(parent_parser=parser)
args = Trainer.parse_argparser(parser)
assert getattr(args, "profiler") == expected_parsed_arg
trainer = Trainer.from_argparse_args(args)
assert isinstance(trainer.profiler, expected_profiler)
def test_trainer_enable_pl_optimizer(tmpdir):
with pytest.deprecated_call(match='will be removed in v1.3'):
Trainer(enable_pl_optimizer=True)