# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test deprecated functionality which will be removed in vX.Y.Z""" from argparse import ArgumentParser from unittest import mock import pytest import torch from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.profiler.profilers import PassThroughProfiler, SimpleProfiler def test_v1_3_0_deprecated_arguments(tmpdir): with pytest.deprecated_call(match='will no longer be supported in v1.3'): callback = ModelCheckpoint() Trainer(checkpoint_callback=callback, callbacks=[], default_root_dir=tmpdir) # Deprecate prefix with pytest.deprecated_call(match='will be removed in v1.3'): ModelCheckpoint(prefix='temp') # Deprecate auto mode with pytest.deprecated_call(match='will be removed in v1.3'): ModelCheckpoint(mode='auto') with pytest.deprecated_call(match='will be removed in v1.3'): EarlyStopping(mode='auto') with pytest.deprecated_call(match="The setter for self.hparams in LightningModule is deprecated"): class DeprecatedHparamsModel(LightningModule): def __init__(self, hparams): super().__init__() self.hparams = hparams DeprecatedHparamsModel({}) def test_v1_3_0_deprecated_metrics(): from pytorch_lightning.metrics.functional.classification import to_onehot with pytest.deprecated_call(match='will be removed in v1.3'): to_onehot(torch.tensor([1, 2, 3])) from pytorch_lightning.metrics.functional.classification import to_categorical with pytest.deprecated_call(match='will be removed in v1.3'): to_categorical(torch.tensor([[0.2, 0.5], [0.9, 0.1]])) from pytorch_lightning.metrics.functional.classification import get_num_classes with pytest.deprecated_call(match='will be removed in v1.3'): get_num_classes(pred=torch.tensor([0, 1]), target=torch.tensor([1, 1])) x_binary = torch.tensor([0, 1, 2, 3]) y_binary = torch.tensor([0, 1, 2, 3]) from pytorch_lightning.metrics.functional.classification import roc with pytest.deprecated_call(match='will be removed in v1.3'): roc(pred=x_binary, target=y_binary) from pytorch_lightning.metrics.functional.classification import _roc with pytest.deprecated_call(match='will be removed in v1.3'): _roc(pred=x_binary, target=y_binary) x_multy = torch.tensor([[0.85, 0.05, 0.05, 0.05], [0.05, 0.85, 0.05, 0.05], [0.05, 0.05, 0.85, 0.05], [0.05, 0.05, 0.05, 0.85]]) y_multy = torch.tensor([0, 1, 3, 2]) from pytorch_lightning.metrics.functional.classification import multiclass_roc with pytest.deprecated_call(match='will be removed in v1.3'): multiclass_roc(pred=x_multy, target=y_multy) from pytorch_lightning.metrics.functional.classification import average_precision with pytest.deprecated_call(match='will be removed in v1.3'): average_precision(pred=x_binary, target=y_binary) from pytorch_lightning.metrics.functional.classification import precision_recall_curve with pytest.deprecated_call(match='will be removed in v1.3'): precision_recall_curve(pred=x_binary, target=y_binary) from pytorch_lightning.metrics.functional.classification import multiclass_precision_recall_curve with pytest.deprecated_call(match='will be removed in v1.3'): multiclass_precision_recall_curve(pred=x_multy, target=y_multy) from pytorch_lightning.metrics.functional.reduction import reduce with pytest.deprecated_call(match='will be removed in v1.3'): reduce(torch.tensor([0, 1, 1, 0]), 'sum') from pytorch_lightning.metrics.functional.reduction import class_reduce with pytest.deprecated_call(match='will be removed in v1.3'): class_reduce(torch.randint(1, 10, (50,)).float(), torch.randint(10, 20, (50,)).float(), torch.randint(1, 100, (50,)).float()) # TODO: remove bool from Trainer.profiler param in v1.3.0, update profiler_connector.py @pytest.mark.parametrize(['profiler', 'expected'], [ (True, SimpleProfiler), (False, PassThroughProfiler), ]) def test_trainer_profiler_remove_in_v1_3_0(profiler, expected): # remove bool from Trainer.profiler param in v1.3.0, update profiler_connector.py with pytest.deprecated_call(match='will be removed in v1.3'): trainer = Trainer(profiler=profiler) assert isinstance(trainer.profiler, expected) @pytest.mark.parametrize( ['cli_args', 'expected_parsed_arg', 'expected_profiler'], [ ('--profiler', True, SimpleProfiler), ('--profiler True', True, SimpleProfiler), ('--profiler False', False, PassThroughProfiler), ], ) def test_v1_3_0_trainer_cli_profiler(cli_args, expected_parsed_arg, expected_profiler): cli_args = cli_args.split(' ') with mock.patch("argparse._sys.argv", ["any.py"] + cli_args): parser = ArgumentParser(add_help=False) parser = Trainer.add_argparse_args(parent_parser=parser) args = Trainer.parse_argparser(parser) assert getattr(args, "profiler") == expected_parsed_arg trainer = Trainer.from_argparse_args(args) assert isinstance(trainer.profiler, expected_profiler) def test_trainer_enable_pl_optimizer(tmpdir): with pytest.deprecated_call(match='will be removed in v1.3'): Trainer(enable_pl_optimizer=True)