lightning/tests
Jirka Borovec a153fe4c2a
fix codecov reports (#1867)
* fix codecov

* upgrade codecov

* upgrade codecov
2020-05-18 20:34:59 -04:00
..
base Replace meta_tags.csv with hparams.yaml (#1271) 2020-05-13 15:05:15 +02:00
callbacks Fix lr key name in case of param groups (#1719) 2020-05-10 17:05:34 -04:00
loggers Fix NeptuneLogger to work in ddp mode (#1753) 2020-05-10 13:19:18 -04:00
models Replace meta_tags.csv with hparams.yaml (#1271) 2020-05-13 15:05:15 +02:00
trainer add test for trainer.test() (#1858) 2020-05-17 16:30:20 -04:00
Dockerfile Tests/docker (#1573) 2020-04-23 12:52:59 -04:00
README.md Tests/docker (#1573) 2020-04-23 12:52:59 -04:00
__init__.py default test logger (#1478) 2020-04-21 20:33:10 -04:00
collect_env_details.py fix changelog (#1452) 2020-04-20 17:36:26 -04:00
conftest.py test deprecation warnings (#1470) 2020-04-23 17:34:47 -04:00
install_AMP.sh CI: split tests-examples (#990) 2020-03-25 07:46:27 -04:00
requirements-devel.txt Tests/docker (#1573) 2020-04-23 12:52:59 -04:00
requirements.txt fix codecov reports (#1867) 2020-05-18 20:34:59 -04:00
test_deprecated.py Allow user to select individual TPU core to train on (#1729) 2020-05-17 16:30:54 -04:00
test_profiler.py RC & Docs/changelog (#1776) 2020-05-11 21:57:53 -04:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash tests/install_AMP.sh

# install dev deps
pip install -r tests/requirements-devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under tests/requirements-devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-pt_1_4 -f tests/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-pt_1_4 bash
docker image rm pytorch_lightning:devel-pt_1_4