85 lines
3.0 KiB
Python
85 lines
3.0 KiB
Python
import os
|
|
from torch.utils.data import random_split, DataLoader
|
|
|
|
from pytorch_lightning.core.datamodule import LightningDataModule
|
|
from tests.base.datasets import TrialMNIST, MNIST
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
|
|
class TrialMNISTDataModule(LightningDataModule):
|
|
|
|
def __init__(self, data_dir: str = './'):
|
|
super().__init__()
|
|
self.data_dir = data_dir
|
|
self.non_picklable = None
|
|
|
|
def prepare_data(self):
|
|
TrialMNIST(self.data_dir, train=True, download=True)
|
|
TrialMNIST(self.data_dir, train=False, download=True)
|
|
|
|
def setup(self, stage: str = None):
|
|
|
|
if stage == 'fit' or stage is None:
|
|
mnist_full = TrialMNIST(root=self.data_dir, train=True, num_samples=64, download=True)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64])
|
|
self.dims = self.mnist_train[0][0].shape
|
|
|
|
if stage == 'test' or stage is None:
|
|
self.mnist_test = TrialMNIST(root=self.data_dir, train=False, num_samples=32, download=True)
|
|
self.dims = getattr(self, 'dims', self.mnist_test[0][0].shape)
|
|
|
|
self.non_picklable = lambda x: x**2
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(self.mnist_train, batch_size=32)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(self.mnist_val, batch_size=32)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=32)
|
|
|
|
|
|
class MNISTDataModule(LightningDataModule):
|
|
def __init__(
|
|
self, data_dir: str = './', batch_size: int = 32, dist_sampler: bool = False
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.dist_sampler = dist_sampler
|
|
self.data_dir = data_dir
|
|
self.batch_size = batch_size
|
|
|
|
# self.dims is returned when you call dm.size()
|
|
# Setting default dims here because we know them.
|
|
# Could optionally be assigned dynamically in dm.setup()
|
|
self.dims = (1, 28, 28)
|
|
|
|
def prepare_data(self):
|
|
# download only
|
|
MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081))
|
|
MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081))
|
|
|
|
def setup(self, stage: str = None):
|
|
|
|
# Assign train/val datasets for use in dataloaders
|
|
# TODO: need to split using random_split once updated to torch >= 1.6
|
|
if stage == 'fit' or stage is None:
|
|
self.mnist_train = MNIST(self.data_dir, train=True, normalize=(0.1307, 0.3081))
|
|
|
|
# Assign test dataset for use in dataloader(s)
|
|
if stage == 'test' or stage is None:
|
|
self.mnist_test = MNIST(self.data_dir, train=False, normalize=(0.1307, 0.3081))
|
|
|
|
def train_dataloader(self):
|
|
dist_sampler = None
|
|
if self.dist_sampler:
|
|
dist_sampler = DistributedSampler(self.mnist_train, shuffle=False)
|
|
|
|
return DataLoader(
|
|
self.mnist_train, batch_size=self.batch_size, sampler=dist_sampler, shuffle=False
|
|
)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False)
|