import os from torch.utils.data import random_split, DataLoader from pytorch_lightning.core.datamodule import LightningDataModule from tests.base.datasets import TrialMNIST, MNIST from torch.utils.data.distributed import DistributedSampler class TrialMNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = './'): super().__init__() self.data_dir = data_dir self.non_picklable = None def prepare_data(self): TrialMNIST(self.data_dir, train=True, download=True) TrialMNIST(self.data_dir, train=False, download=True) def setup(self, stage: str = None): if stage == 'fit' or stage is None: mnist_full = TrialMNIST(root=self.data_dir, train=True, num_samples=64, download=True) self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64]) self.dims = self.mnist_train[0][0].shape if stage == 'test' or stage is None: self.mnist_test = TrialMNIST(root=self.data_dir, train=False, num_samples=32, download=True) self.dims = getattr(self, 'dims', self.mnist_test[0][0].shape) self.non_picklable = lambda x: x**2 def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=32) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=32) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=32) class MNISTDataModule(LightningDataModule): def __init__( self, data_dir: str = './', batch_size: int = 32, dist_sampler: bool = False ) -> None: super().__init__() self.dist_sampler = dist_sampler self.data_dir = data_dir self.batch_size = batch_size # self.dims is returned when you call dm.size() # Setting default dims here because we know them. # Could optionally be assigned dynamically in dm.setup() self.dims = (1, 28, 28) def prepare_data(self): # download only MNIST(self.data_dir, train=True, download=True, normalize=(0.1307, 0.3081)) MNIST(self.data_dir, train=False, download=True, normalize=(0.1307, 0.3081)) def setup(self, stage: str = None): # Assign train/val datasets for use in dataloaders # TODO: need to split using random_split once updated to torch >= 1.6 if stage == 'fit' or stage is None: self.mnist_train = MNIST(self.data_dir, train=True, normalize=(0.1307, 0.3081)) # Assign test dataset for use in dataloader(s) if stage == 'test' or stage is None: self.mnist_test = MNIST(self.data_dir, train=False, normalize=(0.1307, 0.3081)) def train_dataloader(self): dist_sampler = None if self.dist_sampler: dist_sampler = DistributedSampler(self.mnist_train, shuffle=False) return DataLoader( self.mnist_train, batch_size=self.batch_size, sampler=dist_sampler, shuffle=False ) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size, shuffle=False)