83 lines
3.4 KiB
Python
83 lines
3.4 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.plugins.apex import ApexPlugin
|
|
from pytorch_lightning.plugins.native_amp import NativeAMPPlugin
|
|
from pytorch_lightning.utilities import _APEX_AVAILABLE, _NATIVE_AMP_AVAILABLE, AMPType, rank_zero_warn
|
|
|
|
|
|
class PrecisionConnector:
|
|
|
|
def __init__(self, trainer):
|
|
self.trainer = trainer
|
|
self.backend = None
|
|
|
|
def on_trainer_init(self, precision: int, amp_level: str, amp_backend: str):
|
|
# AMP init
|
|
# These are the only lines needed after v0.8.0
|
|
# we wrap the user's forward with autocast and give it back at the end of fit
|
|
self.trainer.autocast_original_forward = None
|
|
self.trainer.precision = precision
|
|
self.trainer.scaler = None
|
|
|
|
self.trainer.amp_level = amp_level
|
|
self.init_amp(amp_backend)
|
|
|
|
def init_amp(self, amp_type: str):
|
|
assert self.trainer.precision in (16, 32), 'only 32 or 16 bit precision supported'
|
|
self.trainer.amp_backend = None
|
|
self._setup_amp_backend(amp_type)
|
|
|
|
def _setup_amp_backend(self, amp_type: str):
|
|
if self.trainer.precision != 16:
|
|
# no AMP requested, so we can leave now
|
|
return
|
|
|
|
amp_type = amp_type.lower()
|
|
assert amp_type in ('native', 'apex'), f'Unsupported amp type {amp_type}'
|
|
if amp_type == 'native':
|
|
if not _NATIVE_AMP_AVAILABLE:
|
|
rank_zero_warn('You have asked for native AMP but your PyTorch version does not support it.'
|
|
' Consider upgrading with `pip install torch>=1.6`.'
|
|
' We will attempt to use NVIDIA Apex for this session.')
|
|
amp_type = 'apex'
|
|
else:
|
|
self.trainer.amp_backend = AMPType.NATIVE
|
|
log.info('Using native 16bit precision.')
|
|
self.backend = NativeAMPPlugin(self.trainer)
|
|
|
|
if amp_type == 'apex':
|
|
if not _APEX_AVAILABLE:
|
|
rank_zero_warn('You have asked for Apex AMP but you have not installed it yet.'
|
|
' Install apex first using this guide: https://github.com/NVIDIA/apex#linux')
|
|
else:
|
|
log.info('Using APEX 16bit precision.')
|
|
self.trainer.amp_backend = AMPType.APEX
|
|
self.backend = ApexPlugin(self.trainer)
|
|
log.warn("LightningOptimizer doesn't support Apex")
|
|
|
|
if not self.trainer.amp_backend:
|
|
raise ModuleNotFoundError(
|
|
f'You have asked for AMP support {amp_type}, but there is no support on your side yet.'
|
|
f' Consider installing torch >= 1.6 or NVIDIA Apex.'
|
|
)
|
|
|
|
def connect(self, model):
|
|
if self.backend:
|
|
model, optimizers = self.backend.connect(model, self.trainer.optimizers)
|
|
self.trainer.optimizers = optimizers
|
|
|
|
return model
|