# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pytorch_lightning import _logger as log from pytorch_lightning.plugins.apex import ApexPlugin from pytorch_lightning.plugins.native_amp import NativeAMPPlugin from pytorch_lightning.utilities import _APEX_AVAILABLE, _NATIVE_AMP_AVAILABLE, AMPType, rank_zero_warn class PrecisionConnector: def __init__(self, trainer): self.trainer = trainer self.backend = None def on_trainer_init(self, precision: int, amp_level: str, amp_backend: str): # AMP init # These are the only lines needed after v0.8.0 # we wrap the user's forward with autocast and give it back at the end of fit self.trainer.autocast_original_forward = None self.trainer.precision = precision self.trainer.scaler = None self.trainer.amp_level = amp_level self.init_amp(amp_backend) def init_amp(self, amp_type: str): assert self.trainer.precision in (16, 32), 'only 32 or 16 bit precision supported' self.trainer.amp_backend = None self._setup_amp_backend(amp_type) def _setup_amp_backend(self, amp_type: str): if self.trainer.precision != 16: # no AMP requested, so we can leave now return amp_type = amp_type.lower() assert amp_type in ('native', 'apex'), f'Unsupported amp type {amp_type}' if amp_type == 'native': if not _NATIVE_AMP_AVAILABLE: rank_zero_warn('You have asked for native AMP but your PyTorch version does not support it.' ' Consider upgrading with `pip install torch>=1.6`.' ' We will attempt to use NVIDIA Apex for this session.') amp_type = 'apex' else: self.trainer.amp_backend = AMPType.NATIVE log.info('Using native 16bit precision.') self.backend = NativeAMPPlugin(self.trainer) if amp_type == 'apex': if not _APEX_AVAILABLE: rank_zero_warn('You have asked for Apex AMP but you have not installed it yet.' ' Install apex first using this guide: https://github.com/NVIDIA/apex#linux') else: log.info('Using APEX 16bit precision.') self.trainer.amp_backend = AMPType.APEX self.backend = ApexPlugin(self.trainer) log.warn("LightningOptimizer doesn't support Apex") if not self.trainer.amp_backend: raise ModuleNotFoundError( f'You have asked for AMP support {amp_type}, but there is no support on your side yet.' f' Consider installing torch >= 1.6 or NVIDIA Apex.' ) def connect(self, model): if self.backend: model, optimizers = self.backend.connect(model, self.trainer.optimizers) self.trainer.optimizers = optimizers return model