lightning/tests/base/model_optimizers.py

95 lines
3.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
from torch import optim
class ConfigureOptimizersPool(ABC):
def configure_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer
def configure_optimizers__empty(self):
return None
def configure_optimizers__lbfgs(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
optimizer = optim.LBFGS(self.parameters(), lr=self.learning_rate)
return optimizer
def configure_optimizers__adagrad(self):
optimizer = optim.Adagrad(self.parameters(), lr=self.learning_rate)
return optimizer
def configure_optimizers__multiple_optimizers(self):
"""
return whatever optimizers we want here.
:return: list of optimizers
"""
# try no scheduler for this model (testing purposes)
optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate)
return optimizer1, optimizer2
def configure_optimizers__multiple_optimizers_frequency(self):
optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate)
return [
{'optimizer': optimizer1, 'frequency': 1},
{'optimizer': optimizer2, 'frequency': 5}
]
def configure_optimizers__single_scheduler(self):
optimizer = optim.Adam(self.parameters(), lr=self.learning_rate)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)
return [optimizer], [lr_scheduler]
def configure_optimizers__onecycle_scheduler(self):
optimizer = optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9)
lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer,
max_lr=self.learning_rate,
total_steps=10_000)
return [optimizer], [lr_scheduler]
def configure_optimizers__multiple_schedulers(self):
optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate)
optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate)
lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1)
lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1)
return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2]
def configure_optimizers__param_groups(self):
param_groups = [
{'params': list(self.parameters())[:2], 'lr': self.learning_rate * 0.1},
{'params': list(self.parameters())[2:], 'lr': self.learning_rate}
]
optimizer = optim.Adam(param_groups)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1)
return [optimizer], [lr_scheduler]
def configure_optimizers__lr_from_hparams(self):
optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
return optimizer