# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC from torch import optim class ConfigureOptimizersPool(ABC): def configure_optimizers(self): """ return whatever optimizers we want here. :return: list of optimizers """ optimizer = optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer def configure_optimizers__empty(self): return None def configure_optimizers__lbfgs(self): """ return whatever optimizers we want here. :return: list of optimizers """ optimizer = optim.LBFGS(self.parameters(), lr=self.learning_rate) return optimizer def configure_optimizers__adagrad(self): optimizer = optim.Adagrad(self.parameters(), lr=self.learning_rate) return optimizer def configure_optimizers__multiple_optimizers(self): """ return whatever optimizers we want here. :return: list of optimizers """ # try no scheduler for this model (testing purposes) optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate) optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer1, optimizer2 def configure_optimizers__multiple_optimizers_frequency(self): optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate) optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate) return [ {'optimizer': optimizer1, 'frequency': 1}, {'optimizer': optimizer2, 'frequency': 5} ] def configure_optimizers__single_scheduler(self): optimizer = optim.Adam(self.parameters(), lr=self.learning_rate) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) return [optimizer], [lr_scheduler] def configure_optimizers__onecycle_scheduler(self): optimizer = optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9) lr_scheduler = optim.lr_scheduler.OneCycleLR(optimizer, max_lr=self.learning_rate, total_steps=10_000) return [optimizer], [lr_scheduler] def configure_optimizers__multiple_schedulers(self): optimizer1 = optim.Adam(self.parameters(), lr=self.learning_rate) optimizer2 = optim.Adam(self.parameters(), lr=self.learning_rate) lr_scheduler1 = optim.lr_scheduler.StepLR(optimizer1, 1, gamma=0.1) lr_scheduler2 = optim.lr_scheduler.StepLR(optimizer2, 1, gamma=0.1) return [optimizer1, optimizer2], [lr_scheduler1, lr_scheduler2] def configure_optimizers__param_groups(self): param_groups = [ {'params': list(self.parameters())[:2], 'lr': self.learning_rate * 0.1}, {'params': list(self.parameters())[2:], 'lr': self.learning_rate} ] optimizer = optim.Adam(param_groups) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.1) return [optimizer], [lr_scheduler] def configure_optimizers__lr_from_hparams(self): optimizer = optim.Adam(self.parameters(), lr=self.hparams.learning_rate) return optimizer