lightning/pytorch_lightning/loggers/wandb.py

193 lines
6.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Weights and Biases Logger
-------------------------
"""
import os
from argparse import Namespace
from typing import Any, Dict, Optional, Union
import torch.nn as nn
try:
import wandb
from wandb.wandb_run import Run
except ImportError: # pragma: no-cover
wandb = None
Run = None
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities.warning_utils import WarningCache
class WandbLogger(LightningLoggerBase):
r"""
Log using `Weights and Biases <https://www.wandb.com/>`_.
Install it with pip:
.. code-block:: bash
pip install wandb
Args:
name: Display name for the run.
save_dir: Path where data is saved.
offline: Run offline (data can be streamed later to wandb servers).
id: Sets the version, mainly used to resume a previous run.
anonymous: Enables or explicitly disables anonymous logging.
version: Sets the version, mainly used to resume a previous run.
project: The name of the project to which this run will belong.
log_model: Save checkpoints in wandb dir to upload on W&B servers.
experiment: WandB experiment object.
prefix: A string to put at the beginning of metric keys.
\**kwargs: Additional arguments like `entity`, `group`, `tags`, etc. used by
:func:`wandb.init` can be passed as keyword arguments in this logger.
Example::
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
Note: When logging manually through `wandb.log` or `trainer.logger.experiment.log`,
make sure to use `commit=False` so the logging step does not increase.
See Also:
- `Tutorial <https://app.wandb.ai/cayush/pytorchlightning/reports/
Use-Pytorch-Lightning-with-Weights-%26-Biases--Vmlldzo2NjQ1Mw>`__
on how to use W&B with Pytorch Lightning.
"""
LOGGER_JOIN_CHAR = '-'
def __init__(
self,
name: Optional[str] = None,
save_dir: Optional[str] = None,
offline: bool = False,
id: Optional[str] = None,
anonymous: bool = False,
version: Optional[str] = None,
project: Optional[str] = None,
log_model: bool = False,
experiment=None,
prefix: str = '',
**kwargs
):
if wandb is None:
raise ImportError('You want to use `wandb` logger which is not installed yet,' # pragma: no-cover
' install it with `pip install wandb`.')
super().__init__()
self._name = name
self._save_dir = save_dir
self._anonymous = 'allow' if anonymous else None
self._id = version or id
self._project = project
self._experiment = experiment
self._offline = offline
self._log_model = log_model
self._prefix = prefix
self._kwargs = kwargs
# logging multiple Trainer on a single W&B run (k-fold, resuming, etc)
self._step_offset = 0
self.warning_cache = WarningCache()
def __getstate__(self):
state = self.__dict__.copy()
# args needed to reload correct experiment
state['_id'] = self._experiment.id if self._experiment is not None else None
# cannot be pickled
state['_experiment'] = None
return state
@property
@rank_zero_experiment
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(
name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous,
id=self._id, resume='allow', **self._kwargs) if wandb.run is None else wandb.run
# offset logging step when resuming a run
self._step_offset = self._experiment.step
# save checkpoints in wandb dir to upload on W&B servers
if self._log_model:
self._save_dir = self._experiment.dir
return self._experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
self.experiment.watch(model, log=log, log_freq=log_freq)
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
params = self._sanitize_callable_params(params)
self.experiment.config.update(params, allow_val_change=True)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
metrics = self._add_prefix(metrics)
if step is not None and step + self._step_offset < self.experiment.step:
self.warning_cache.warn(
'Trying to log at a previous step. Use `commit=False` when logging metrics manually.'
)
self.experiment.log(metrics, step=(step + self._step_offset) if step is not None else None)
@property
def save_dir(self) -> Optional[str]:
return self._save_dir
@property
def name(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.project_name() if self._experiment else self._name
@property
def version(self) -> Optional[str]:
# don't create an experiment if we don't have one
return self._experiment.id if self._experiment else self._id
@rank_zero_only
def finalize(self, status: str) -> None:
# offset future training logged on same W&B run
if self._experiment is not None:
self._step_offset = self._experiment.step
# upload all checkpoints from saving dir
if self._log_model:
wandb.save(os.path.join(self.save_dir, "*.ckpt"))