# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Weights and Biases Logger ------------------------- """ import os from argparse import Namespace from typing import Any, Dict, Optional, Union import torch.nn as nn try: import wandb from wandb.wandb_run import Run except ImportError: # pragma: no-cover wandb = None Run = None from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import rank_zero_only from pytorch_lightning.utilities.warning_utils import WarningCache class WandbLogger(LightningLoggerBase): r""" Log using `Weights and Biases `_. Install it with pip: .. code-block:: bash pip install wandb Args: name: Display name for the run. save_dir: Path where data is saved. offline: Run offline (data can be streamed later to wandb servers). id: Sets the version, mainly used to resume a previous run. anonymous: Enables or explicitly disables anonymous logging. version: Sets the version, mainly used to resume a previous run. project: The name of the project to which this run will belong. log_model: Save checkpoints in wandb dir to upload on W&B servers. experiment: WandB experiment object. prefix: A string to put at the beginning of metric keys. \**kwargs: Additional arguments like `entity`, `group`, `tags`, etc. used by :func:`wandb.init` can be passed as keyword arguments in this logger. Example:: .. code-block:: python from pytorch_lightning.loggers import WandbLogger from pytorch_lightning import Trainer wandb_logger = WandbLogger() trainer = Trainer(logger=wandb_logger) Note: When logging manually through `wandb.log` or `trainer.logger.experiment.log`, make sure to use `commit=False` so the logging step does not increase. See Also: - `Tutorial `__ on how to use W&B with Pytorch Lightning. """ LOGGER_JOIN_CHAR = '-' def __init__( self, name: Optional[str] = None, save_dir: Optional[str] = None, offline: bool = False, id: Optional[str] = None, anonymous: bool = False, version: Optional[str] = None, project: Optional[str] = None, log_model: bool = False, experiment=None, prefix: str = '', **kwargs ): if wandb is None: raise ImportError('You want to use `wandb` logger which is not installed yet,' # pragma: no-cover ' install it with `pip install wandb`.') super().__init__() self._name = name self._save_dir = save_dir self._anonymous = 'allow' if anonymous else None self._id = version or id self._project = project self._experiment = experiment self._offline = offline self._log_model = log_model self._prefix = prefix self._kwargs = kwargs # logging multiple Trainer on a single W&B run (k-fold, resuming, etc) self._step_offset = 0 self.warning_cache = WarningCache() def __getstate__(self): state = self.__dict__.copy() # args needed to reload correct experiment state['_id'] = self._experiment.id if self._experiment is not None else None # cannot be pickled state['_experiment'] = None return state @property @rank_zero_experiment def experiment(self) -> Run: r""" Actual wandb object. To use wandb features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_wandb_function() """ if self._experiment is None: if self._offline: os.environ['WANDB_MODE'] = 'dryrun' self._experiment = wandb.init( name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous, id=self._id, resume='allow', **self._kwargs) if wandb.run is None else wandb.run # offset logging step when resuming a run self._step_offset = self._experiment.step # save checkpoints in wandb dir to upload on W&B servers if self._log_model: self._save_dir = self._experiment.dir return self._experiment def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100): self.experiment.watch(model, log=log, log_freq=log_freq) @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) params = self._flatten_dict(params) params = self._sanitize_callable_params(params) self.experiment.config.update(params, allow_val_change=True) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0' metrics = self._add_prefix(metrics) if step is not None and step + self._step_offset < self.experiment.step: self.warning_cache.warn( 'Trying to log at a previous step. Use `commit=False` when logging metrics manually.' ) self.experiment.log(metrics, step=(step + self._step_offset) if step is not None else None) @property def save_dir(self) -> Optional[str]: return self._save_dir @property def name(self) -> Optional[str]: # don't create an experiment if we don't have one return self._experiment.project_name() if self._experiment else self._name @property def version(self) -> Optional[str]: # don't create an experiment if we don't have one return self._experiment.id if self._experiment else self._id @rank_zero_only def finalize(self, status: str) -> None: # offset future training logged on same W&B run if self._experiment is not None: self._step_offset = self._experiment.step # upload all checkpoints from saving dir if self._log_model: wandb.save(os.path.join(self.save_dir, "*.ckpt"))