lightning/pytorch_lightning/loggers/mlflow.py

181 lines
6.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
MLflow
------
"""
from argparse import Namespace
from time import time
from typing import Optional, Dict, Any, Union
try:
import mlflow
from mlflow.tracking import MlflowClient
_MLFLOW_AVAILABLE = True
except ModuleNotFoundError: # pragma: no-cover
mlflow = None
MlflowClient = None
_MLFLOW_AVAILABLE = False
from pytorch_lightning import _logger as log
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment
from pytorch_lightning.utilities import rank_zero_only
LOCAL_FILE_URI_PREFIX = "file:"
class MLFlowLogger(LightningLoggerBase):
"""
Log using `MLflow <https://mlflow.org>`_. Install it with pip:
.. code-block:: bash
pip install mlflow
Example:
>>> from pytorch_lightning import Trainer
>>> from pytorch_lightning.loggers import MLFlowLogger
>>> mlf_logger = MLFlowLogger(
... experiment_name="default",
... tracking_uri="file:./ml-runs"
... )
>>> trainer = Trainer(logger=mlf_logger)
Use the logger anywhere in you :class:`~pytorch_lightning.core.lightning.LightningModule` as follows:
>>> from pytorch_lightning import LightningModule
>>> class LitModel(LightningModule):
... def training_step(self, batch, batch_idx):
... # example
... self.logger.experiment.whatever_ml_flow_supports(...)
...
... def any_lightning_module_function_or_hook(self):
... self.logger.experiment.whatever_ml_flow_supports(...)
Args:
experiment_name: The name of the experiment
tracking_uri: Address of local or remote tracking server.
If not provided, defaults to `file:<save_dir>`.
tags: A dictionary tags for the experiment.
save_dir: A path to a local directory where the MLflow runs get saved.
Defaults to `./mlflow` if `tracking_uri` is not provided.
Has no effect if `tracking_uri` is provided.
"""
def __init__(self,
experiment_name: str = 'default',
tracking_uri: Optional[str] = None,
tags: Optional[Dict[str, Any]] = None,
save_dir: Optional[str] = './mlruns'):
if not _MLFLOW_AVAILABLE:
raise ImportError('You want to use `mlflow` logger which is not installed yet,'
' install it with `pip install mlflow`.')
super().__init__()
if not tracking_uri:
tracking_uri = f'{LOCAL_FILE_URI_PREFIX}{save_dir}'
self._experiment_name = experiment_name
self._experiment_id = None
self._tracking_uri = tracking_uri
self._run_id = None
self.tags = tags
self._mlflow_client = MlflowClient(tracking_uri)
@property
@rank_zero_experiment
def experiment(self) -> MlflowClient:
r"""
Actual MLflow object. To use MLflow features in your
:class:`~pytorch_lightning.core.lightning.LightningModule` do the following.
Example::
self.logger.experiment.some_mlflow_function()
"""
if self._experiment_id is None:
expt = self._mlflow_client.get_experiment_by_name(self._experiment_name)
if expt is not None:
self._experiment_id = expt.experiment_id
else:
log.warning(f'Experiment with name {self._experiment_name} not found. Creating it.')
self._experiment_id = self._mlflow_client.create_experiment(name=self._experiment_name)
if self._run_id is None:
run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=self.tags)
self._run_id = run.info.run_id
return self._mlflow_client
@property
def run_id(self):
# create the experiment if it does not exist to get the run id
_ = self.experiment
return self._run_id
@property
def experiment_id(self):
# create the experiment if it does not exist to get the experiment id
_ = self.experiment
return self._experiment_id
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
params = self._flatten_dict(params)
for k, v in params.items():
self.experiment.log_param(self.run_id, k, v)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'
timestamp_ms = int(time() * 1000)
for k, v in metrics.items():
if isinstance(v, str):
log.warning(f'Discarding metric with string value {k}={v}.')
continue
self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step)
@rank_zero_only
def finalize(self, status: str = 'FINISHED') -> None:
super().finalize(status)
status = 'FINISHED' if status == 'success' else status
if self.experiment.get_run(self.run_id):
self.experiment.set_terminated(self.run_id, status)
@property
def save_dir(self) -> Optional[str]:
"""
The root file directory in which MLflow experiments are saved.
Return:
Local path to the root experiment directory if the tracking uri is local.
Otherwhise returns `None`.
"""
if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX):
return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX)
@property
def name(self) -> str:
return self.experiment_id
@property
def version(self) -> str:
return self.run_id