# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MLflow ------ """ from argparse import Namespace from time import time from typing import Optional, Dict, Any, Union try: import mlflow from mlflow.tracking import MlflowClient _MLFLOW_AVAILABLE = True except ModuleNotFoundError: # pragma: no-cover mlflow = None MlflowClient = None _MLFLOW_AVAILABLE = False from pytorch_lightning import _logger as log from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_experiment from pytorch_lightning.utilities import rank_zero_only LOCAL_FILE_URI_PREFIX = "file:" class MLFlowLogger(LightningLoggerBase): """ Log using `MLflow `_. Install it with pip: .. code-block:: bash pip install mlflow Example: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.loggers import MLFlowLogger >>> mlf_logger = MLFlowLogger( ... experiment_name="default", ... tracking_uri="file:./ml-runs" ... ) >>> trainer = Trainer(logger=mlf_logger) Use the logger anywhere in you :class:`~pytorch_lightning.core.lightning.LightningModule` as follows: >>> from pytorch_lightning import LightningModule >>> class LitModel(LightningModule): ... def training_step(self, batch, batch_idx): ... # example ... self.logger.experiment.whatever_ml_flow_supports(...) ... ... def any_lightning_module_function_or_hook(self): ... self.logger.experiment.whatever_ml_flow_supports(...) Args: experiment_name: The name of the experiment tracking_uri: Address of local or remote tracking server. If not provided, defaults to `file:`. tags: A dictionary tags for the experiment. save_dir: A path to a local directory where the MLflow runs get saved. Defaults to `./mlflow` if `tracking_uri` is not provided. Has no effect if `tracking_uri` is provided. """ def __init__(self, experiment_name: str = 'default', tracking_uri: Optional[str] = None, tags: Optional[Dict[str, Any]] = None, save_dir: Optional[str] = './mlruns'): if not _MLFLOW_AVAILABLE: raise ImportError('You want to use `mlflow` logger which is not installed yet,' ' install it with `pip install mlflow`.') super().__init__() if not tracking_uri: tracking_uri = f'{LOCAL_FILE_URI_PREFIX}{save_dir}' self._experiment_name = experiment_name self._experiment_id = None self._tracking_uri = tracking_uri self._run_id = None self.tags = tags self._mlflow_client = MlflowClient(tracking_uri) @property @rank_zero_experiment def experiment(self) -> MlflowClient: r""" Actual MLflow object. To use MLflow features in your :class:`~pytorch_lightning.core.lightning.LightningModule` do the following. Example:: self.logger.experiment.some_mlflow_function() """ if self._experiment_id is None: expt = self._mlflow_client.get_experiment_by_name(self._experiment_name) if expt is not None: self._experiment_id = expt.experiment_id else: log.warning(f'Experiment with name {self._experiment_name} not found. Creating it.') self._experiment_id = self._mlflow_client.create_experiment(name=self._experiment_name) if self._run_id is None: run = self._mlflow_client.create_run(experiment_id=self._experiment_id, tags=self.tags) self._run_id = run.info.run_id return self._mlflow_client @property def run_id(self): # create the experiment if it does not exist to get the run id _ = self.experiment return self._run_id @property def experiment_id(self): # create the experiment if it does not exist to get the experiment id _ = self.experiment return self._experiment_id @rank_zero_only def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None: params = self._convert_params(params) params = self._flatten_dict(params) for k, v in params.items(): self.experiment.log_param(self.run_id, k, v) @rank_zero_only def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None: assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0' timestamp_ms = int(time() * 1000) for k, v in metrics.items(): if isinstance(v, str): log.warning(f'Discarding metric with string value {k}={v}.') continue self.experiment.log_metric(self.run_id, k, v, timestamp_ms, step) @rank_zero_only def finalize(self, status: str = 'FINISHED') -> None: super().finalize(status) status = 'FINISHED' if status == 'success' else status if self.experiment.get_run(self.run_id): self.experiment.set_terminated(self.run_id, status) @property def save_dir(self) -> Optional[str]: """ The root file directory in which MLflow experiments are saved. Return: Local path to the root experiment directory if the tracking uri is local. Otherwhise returns `None`. """ if self._tracking_uri.startswith(LOCAL_FILE_URI_PREFIX): return self._tracking_uri.lstrip(LOCAL_FILE_URI_PREFIX) @property def name(self) -> str: return self.experiment_id @property def version(self) -> str: return self.run_id