166 lines
5.1 KiB
Python
166 lines
5.1 KiB
Python
# Copyright The Lightning AI team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tests_pytorch.helpers.utils as tutils
|
|
from lightning.fabric.plugins.environments import SLURMEnvironment
|
|
from lightning.pytorch import Trainer
|
|
from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
|
|
|
|
class AMPTestModel(BoringModel):
|
|
def step(self, batch):
|
|
self._assert_autocast_enabled()
|
|
output = self(batch)
|
|
is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed"
|
|
assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16
|
|
loss = self.loss(output)
|
|
return loss
|
|
|
|
def predict_step(self, batch, batch_idx, dataloader_idx=0):
|
|
self._assert_autocast_enabled()
|
|
output = self(batch)
|
|
is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed"
|
|
assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16
|
|
return output
|
|
|
|
def _assert_autocast_enabled(self):
|
|
if self.trainer.precision_plugin.device == "cpu":
|
|
assert torch.is_autocast_cpu_enabled()
|
|
else:
|
|
assert torch.is_autocast_enabled()
|
|
|
|
|
|
@pytest.mark.flaky(reruns=3)
|
|
@pytest.mark.parametrize(
|
|
("strategy", "precision", "devices"),
|
|
(
|
|
("single_device", "16-mixed", 1),
|
|
("single_device", "bf16-mixed", 1),
|
|
("ddp_spawn", "16-mixed", 2),
|
|
pytest.param("ddp_spawn", "bf16-mixed", 2, marks=RunIf(skip_windows=True)),
|
|
),
|
|
)
|
|
def test_amp_cpus(tmpdir, strategy, precision, devices):
|
|
"""Make sure combinations of AMP and strategies work if supported."""
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
accelerator="cpu",
|
|
devices=devices,
|
|
strategy=strategy,
|
|
precision=precision,
|
|
max_epochs=1,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
logger=False,
|
|
enable_checkpointing=False,
|
|
enable_model_summary=False,
|
|
enable_progress_bar=False,
|
|
)
|
|
model = AMPTestModel()
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
|
|
|
|
@pytest.mark.parametrize("precision", ["16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True))])
|
|
@pytest.mark.parametrize(
|
|
"devices", (pytest.param(1, marks=RunIf(min_cuda_gpus=1)), pytest.param(2, marks=RunIf(min_cuda_gpus=2)))
|
|
)
|
|
def test_amp_gpus(tmpdir, precision, devices):
|
|
"""Make sure combinations of AMP and strategies work if supported."""
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
accelerator="gpu",
|
|
devices=devices,
|
|
strategy=("ddp_spawn" if devices > 1 else "auto"),
|
|
precision=precision,
|
|
)
|
|
|
|
model = AMPTestModel()
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
trainer.predict(model, DataLoader(RandomDataset(32, 64)))
|
|
|
|
|
|
@RunIf(min_cuda_gpus=1)
|
|
@mock.patch.dict(
|
|
os.environ,
|
|
{
|
|
"SLURM_NTASKS": "1",
|
|
"SLURM_NTASKS_PER_NODE": "1",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_LOCALID": "0",
|
|
"SLURM_PROCID": "0",
|
|
},
|
|
)
|
|
def test_amp_gpu_ddp_slurm_managed(tmpdir):
|
|
"""Make sure DDP + AMP work."""
|
|
# simulate setting slurm flags
|
|
model = AMPTestModel()
|
|
|
|
# exp file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# exp file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
accelerator="gpu",
|
|
devices=[0],
|
|
strategy="ddp_spawn",
|
|
precision="16-mixed",
|
|
callbacks=[checkpoint],
|
|
logger=logger,
|
|
)
|
|
trainer.fit(model)
|
|
assert isinstance(trainer.strategy.cluster_environment, SLURMEnvironment)
|
|
|
|
|
|
@pytest.mark.parametrize("clip_val", [0, 10])
|
|
@mock.patch("torch.nn.utils.clip_grad_norm_")
|
|
def test_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir):
|
|
"""Ensure that clip gradients is only called if the value is greater than 0."""
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
enable_progress_bar=False,
|
|
max_epochs=1,
|
|
devices=1,
|
|
precision="16-mixed",
|
|
limit_train_batches=4,
|
|
limit_val_batches=0,
|
|
gradient_clip_val=clip_val,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
if clip_val > 0:
|
|
mock_clip_grad_norm.assert_called()
|
|
else:
|
|
mock_clip_grad_norm.assert_not_called()
|