# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import pytest import torch from torch.utils.data import DataLoader import tests_pytorch.helpers.utils as tutils from lightning.fabric.plugins.environments import SLURMEnvironment from lightning.pytorch import Trainer from lightning.pytorch.demos.boring_classes import BoringModel, RandomDataset from tests_pytorch.helpers.runif import RunIf class AMPTestModel(BoringModel): def step(self, batch): self._assert_autocast_enabled() output = self(batch) is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed" assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16 loss = self.loss(output) return loss def predict_step(self, batch, batch_idx, dataloader_idx=0): self._assert_autocast_enabled() output = self(batch) is_bfloat16 = self.trainer.precision_plugin.precision == "bf16-mixed" assert output.dtype == torch.float16 if not is_bfloat16 else torch.bfloat16 return output def _assert_autocast_enabled(self): if self.trainer.precision_plugin.device == "cpu": assert torch.is_autocast_cpu_enabled() else: assert torch.is_autocast_enabled() @pytest.mark.flaky(reruns=3) @pytest.mark.parametrize( ("strategy", "precision", "devices"), ( ("single_device", "16-mixed", 1), ("single_device", "bf16-mixed", 1), ("ddp_spawn", "16-mixed", 2), pytest.param("ddp_spawn", "bf16-mixed", 2, marks=RunIf(skip_windows=True)), ), ) def test_amp_cpus(tmpdir, strategy, precision, devices): """Make sure combinations of AMP and strategies work if supported.""" trainer = Trainer( default_root_dir=tmpdir, accelerator="cpu", devices=devices, strategy=strategy, precision=precision, max_epochs=1, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1, limit_predict_batches=1, logger=False, enable_checkpointing=False, enable_model_summary=False, enable_progress_bar=False, ) model = AMPTestModel() trainer.fit(model) trainer.test(model) trainer.predict(model) @pytest.mark.parametrize("precision", ["16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True))]) @pytest.mark.parametrize( "devices", (pytest.param(1, marks=RunIf(min_cuda_gpus=1)), pytest.param(2, marks=RunIf(min_cuda_gpus=2))) ) def test_amp_gpus(tmpdir, precision, devices): """Make sure combinations of AMP and strategies work if supported.""" trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=devices, strategy=("ddp_spawn" if devices > 1 else "auto"), precision=precision, ) model = AMPTestModel() trainer.fit(model) trainer.test(model) trainer.predict(model, DataLoader(RandomDataset(32, 64))) @RunIf(min_cuda_gpus=1) @mock.patch.dict( os.environ, { "SLURM_NTASKS": "1", "SLURM_NTASKS_PER_NODE": "1", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0", "SLURM_PROCID": "0", }, ) def test_amp_gpu_ddp_slurm_managed(tmpdir): """Make sure DDP + AMP work.""" # simulate setting slurm flags model = AMPTestModel() # exp file to get meta logger = tutils.get_default_logger(tmpdir) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # fit model trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=[0], strategy="ddp_spawn", precision="16-mixed", callbacks=[checkpoint], logger=logger, ) trainer.fit(model) assert isinstance(trainer.strategy.cluster_environment, SLURMEnvironment) @pytest.mark.parametrize("clip_val", [0, 10]) @mock.patch("torch.nn.utils.clip_grad_norm_") def test_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir): """Ensure that clip gradients is only called if the value is greater than 0.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, devices=1, precision="16-mixed", limit_train_batches=4, limit_val_batches=0, gradient_clip_val=clip_val, ) trainer.fit(model) if clip_val > 0: mock_clip_grad_norm.assert_called() else: mock_clip_grad_norm.assert_not_called()