298 lines
9.0 KiB
Python
298 lines
9.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from copy import deepcopy
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.base import EvalModelTemplate
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.datamodules import ClassifDataModule
|
|
from tests.helpers.simple_models import ClassificationModel
|
|
|
|
|
|
def test_error_on_more_than_1_optimizer(tmpdir):
|
|
""" Check that error is thrown when more than 1 optimizer is passed """
|
|
|
|
model = EvalModelTemplate()
|
|
model.configure_optimizers = model.configure_optimizers__multiple_schedulers
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException):
|
|
trainer.tuner.lr_find(model)
|
|
|
|
|
|
def test_model_reset_correctly(tmpdir):
|
|
""" Check that model weights are correctly reset after lr_find() """
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
before_state_dict = deepcopy(model.state_dict())
|
|
|
|
_ = trainer.tuner.lr_find(model, num_training=5)
|
|
|
|
after_state_dict = model.state_dict()
|
|
|
|
for key in before_state_dict.keys():
|
|
assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \
|
|
'Model was not reset correctly after learning rate finder'
|
|
|
|
assert not os.path.exists(tmpdir / 'lr_find_temp_model.ckpt')
|
|
|
|
|
|
def test_trainer_reset_correctly(tmpdir):
|
|
""" Check that all trainer parameters are reset correctly after lr_find() """
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
)
|
|
|
|
changed_attributes = [
|
|
'callbacks', 'logger', 'max_steps', 'auto_lr_find', 'accumulate_grad_batches', 'checkpoint_callback'
|
|
]
|
|
attributes_before = {}
|
|
for ca in changed_attributes:
|
|
attributes_before[ca] = getattr(trainer, ca)
|
|
|
|
_ = trainer.tuner.lr_find(model, num_training=5)
|
|
|
|
attributes_after = {}
|
|
for ca in changed_attributes:
|
|
attributes_after[ca] = getattr(trainer, ca)
|
|
|
|
for key in changed_attributes:
|
|
assert attributes_before[key] == attributes_after[key], \
|
|
f'Attribute {key} was not reset correctly after learning rate finder'
|
|
|
|
assert model.trainer == trainer
|
|
|
|
|
|
@pytest.mark.parametrize('use_hparams', [False, True])
|
|
def test_trainer_arg_bool(tmpdir, use_hparams):
|
|
""" Test that setting trainer arg to bool works """
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
before_lr = hparams.get('learning_rate')
|
|
if use_hparams:
|
|
del model.learning_rate
|
|
model.configure_optimizers = model.configure_optimizers__lr_from_hparams
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
auto_lr_find=True,
|
|
)
|
|
|
|
trainer.tune(model)
|
|
if use_hparams:
|
|
after_lr = model.hparams.learning_rate
|
|
else:
|
|
after_lr = model.learning_rate
|
|
|
|
assert before_lr != after_lr, \
|
|
'Learning rate was not altered after running learning rate finder'
|
|
|
|
|
|
@pytest.mark.parametrize('use_hparams', [False, True])
|
|
def test_trainer_arg_str(tmpdir, use_hparams):
|
|
""" Test that setting trainer arg to string works """
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
model.my_fancy_lr = 1.0 # update with non-standard field
|
|
model.hparams['my_fancy_lr'] = 1.0
|
|
before_lr = model.my_fancy_lr
|
|
if use_hparams:
|
|
del model.my_fancy_lr
|
|
model.configure_optimizers = model.configure_optimizers__lr_from_hparams
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
auto_lr_find='my_fancy_lr',
|
|
)
|
|
|
|
trainer.tune(model)
|
|
if use_hparams:
|
|
after_lr = model.hparams.my_fancy_lr
|
|
else:
|
|
after_lr = model.my_fancy_lr
|
|
|
|
assert before_lr != after_lr, \
|
|
'Learning rate was not altered after running learning rate finder'
|
|
|
|
|
|
@pytest.mark.parametrize('optimizer', ['Adam', 'Adagrad'])
|
|
def test_call_to_trainer_method(tmpdir, optimizer):
|
|
""" Test that directly calling the trainer method works """
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
if optimizer == 'adagrad':
|
|
model.configure_optimizers = model.configure_optimizers__adagrad
|
|
|
|
before_lr = hparams.get('learning_rate')
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
)
|
|
|
|
lrfinder = trainer.tuner.lr_find(model, mode='linear')
|
|
after_lr = lrfinder.suggestion()
|
|
model.learning_rate = after_lr
|
|
trainer.tune(model)
|
|
|
|
assert before_lr != after_lr, \
|
|
'Learning rate was not altered after running learning rate finder'
|
|
|
|
|
|
def test_datamodule_parameter(tmpdir):
|
|
""" Test that the datamodule parameter works """
|
|
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
|
|
before_lr = model.lr
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
)
|
|
|
|
lrfinder = trainer.tuner.lr_find(model, datamodule=dm)
|
|
after_lr = lrfinder.suggestion()
|
|
model.lr = after_lr
|
|
|
|
assert before_lr != after_lr, \
|
|
'Learning rate was not altered after running learning rate finder'
|
|
|
|
|
|
def test_accumulation_and_early_stopping(tmpdir):
|
|
""" Test that early stopping of learning rate finder works, and that
|
|
accumulation also works for this feature """
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
before_lr = hparams.get('learning_rate')
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
accumulate_grad_batches=2,
|
|
)
|
|
|
|
lrfinder = trainer.tuner.lr_find(model, early_stop_threshold=None)
|
|
after_lr = lrfinder.suggestion()
|
|
|
|
expected_num_lrs = 100
|
|
expected_batch_idx = 200 - 1
|
|
|
|
assert before_lr != after_lr, \
|
|
'Learning rate was not altered after running learning rate finder'
|
|
assert len(lrfinder.results['lr']) == expected_num_lrs, \
|
|
'Early stopping for learning rate finder did not work'
|
|
assert lrfinder._total_batch_idx == expected_batch_idx, \
|
|
'Accumulation parameter did not work'
|
|
|
|
|
|
def test_suggestion_parameters_work(tmpdir):
|
|
""" Test that default skipping does not alter results in basic case """
|
|
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=3,
|
|
)
|
|
|
|
lrfinder = trainer.tuner.lr_find(model, datamodule=dm)
|
|
lr1 = lrfinder.suggestion(skip_begin=10) # default
|
|
lr2 = lrfinder.suggestion(skip_begin=150) # way too high, should have an impact
|
|
|
|
assert lr1 != lr2, 'Skipping parameter did not influence learning rate'
|
|
|
|
|
|
def test_suggestion_with_non_finite_values(tmpdir):
|
|
""" Test that non-finite values does not alter results """
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
model = EvalModelTemplate(**hparams)
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=3,
|
|
)
|
|
|
|
lrfinder = trainer.tuner.lr_find(model)
|
|
before_lr = lrfinder.suggestion()
|
|
lrfinder.results['loss'][-1] = float('nan')
|
|
after_lr = lrfinder.suggestion()
|
|
|
|
assert before_lr == after_lr, \
|
|
'Learning rate was altered because of non-finite loss values'
|
|
|
|
|
|
def test_lr_finder_fails_fast_on_bad_config(tmpdir):
|
|
""" Test that tune fails if the model does not have a lr BEFORE running lr find """
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=2, auto_lr_find=True)
|
|
with pytest.raises(MisconfigurationException, match='should have one of these fields'):
|
|
trainer.tune(BoringModel())
|
|
|
|
|
|
def test_lr_find_with_bs_scale(tmpdir):
|
|
""" Test that lr_find runs with batch_size_scaling """
|
|
|
|
class BoringModelTune(BoringModel):
|
|
|
|
def __init__(self, learning_rate=0.1, batch_size=2):
|
|
super().__init__()
|
|
self.save_hyperparameters()
|
|
|
|
model = BoringModelTune()
|
|
before_lr = model.hparams.learning_rate
|
|
|
|
# logger file to get meta
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=3,
|
|
)
|
|
bs = trainer.tuner.scale_batch_size(model)
|
|
lr = trainer.tuner.lr_find(model).suggestion()
|
|
|
|
assert lr != before_lr
|
|
assert isinstance(bs, int)
|