# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from copy import deepcopy import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate from tests.helpers import BoringModel from tests.helpers.datamodules import ClassifDataModule from tests.helpers.simple_models import ClassificationModel def test_error_on_more_than_1_optimizer(tmpdir): """ Check that error is thrown when more than 1 optimizer is passed """ model = EvalModelTemplate() model.configure_optimizers = model.configure_optimizers__multiple_schedulers # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) with pytest.raises(MisconfigurationException): trainer.tuner.lr_find(model) def test_model_reset_correctly(tmpdir): """ Check that model weights are correctly reset after lr_find() """ model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) before_state_dict = deepcopy(model.state_dict()) _ = trainer.tuner.lr_find(model, num_training=5) after_state_dict = model.state_dict() for key in before_state_dict.keys(): assert torch.all(torch.eq(before_state_dict[key], after_state_dict[key])), \ 'Model was not reset correctly after learning rate finder' assert not os.path.exists(tmpdir / 'lr_find_temp_model.ckpt') def test_trainer_reset_correctly(tmpdir): """ Check that all trainer parameters are reset correctly after lr_find() """ model = EvalModelTemplate() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, ) changed_attributes = [ 'callbacks', 'logger', 'max_steps', 'auto_lr_find', 'accumulate_grad_batches', 'checkpoint_callback' ] attributes_before = {} for ca in changed_attributes: attributes_before[ca] = getattr(trainer, ca) _ = trainer.tuner.lr_find(model, num_training=5) attributes_after = {} for ca in changed_attributes: attributes_after[ca] = getattr(trainer, ca) for key in changed_attributes: assert attributes_before[key] == attributes_after[key], \ f'Attribute {key} was not reset correctly after learning rate finder' assert model.trainer == trainer @pytest.mark.parametrize('use_hparams', [False, True]) def test_trainer_arg_bool(tmpdir, use_hparams): """ Test that setting trainer arg to bool works """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_lr = hparams.get('learning_rate') if use_hparams: del model.learning_rate model.configure_optimizers = model.configure_optimizers__lr_from_hparams # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, auto_lr_find=True, ) trainer.tune(model) if use_hparams: after_lr = model.hparams.learning_rate else: after_lr = model.learning_rate assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' @pytest.mark.parametrize('use_hparams', [False, True]) def test_trainer_arg_str(tmpdir, use_hparams): """ Test that setting trainer arg to string works """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) model.my_fancy_lr = 1.0 # update with non-standard field model.hparams['my_fancy_lr'] = 1.0 before_lr = model.my_fancy_lr if use_hparams: del model.my_fancy_lr model.configure_optimizers = model.configure_optimizers__lr_from_hparams # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, auto_lr_find='my_fancy_lr', ) trainer.tune(model) if use_hparams: after_lr = model.hparams.my_fancy_lr else: after_lr = model.my_fancy_lr assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' @pytest.mark.parametrize('optimizer', ['Adam', 'Adagrad']) def test_call_to_trainer_method(tmpdir, optimizer): """ Test that directly calling the trainer method works """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) if optimizer == 'adagrad': model.configure_optimizers = model.configure_optimizers__adagrad before_lr = hparams.get('learning_rate') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, ) lrfinder = trainer.tuner.lr_find(model, mode='linear') after_lr = lrfinder.suggestion() model.learning_rate = after_lr trainer.tune(model) assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' def test_datamodule_parameter(tmpdir): """ Test that the datamodule parameter works """ dm = ClassifDataModule() model = ClassificationModel() before_lr = model.lr # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, ) lrfinder = trainer.tuner.lr_find(model, datamodule=dm) after_lr = lrfinder.suggestion() model.lr = after_lr assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' def test_accumulation_and_early_stopping(tmpdir): """ Test that early stopping of learning rate finder works, and that accumulation also works for this feature """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) before_lr = hparams.get('learning_rate') # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, accumulate_grad_batches=2, ) lrfinder = trainer.tuner.lr_find(model, early_stop_threshold=None) after_lr = lrfinder.suggestion() expected_num_lrs = 100 expected_batch_idx = 200 - 1 assert before_lr != after_lr, \ 'Learning rate was not altered after running learning rate finder' assert len(lrfinder.results['lr']) == expected_num_lrs, \ 'Early stopping for learning rate finder did not work' assert lrfinder._total_batch_idx == expected_batch_idx, \ 'Accumulation parameter did not work' def test_suggestion_parameters_work(tmpdir): """ Test that default skipping does not alter results in basic case """ dm = ClassifDataModule() model = ClassificationModel() # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, ) lrfinder = trainer.tuner.lr_find(model, datamodule=dm) lr1 = lrfinder.suggestion(skip_begin=10) # default lr2 = lrfinder.suggestion(skip_begin=150) # way too high, should have an impact assert lr1 != lr2, 'Skipping parameter did not influence learning rate' def test_suggestion_with_non_finite_values(tmpdir): """ Test that non-finite values does not alter results """ hparams = EvalModelTemplate.get_default_hparams() model = EvalModelTemplate(**hparams) # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, ) lrfinder = trainer.tuner.lr_find(model) before_lr = lrfinder.suggestion() lrfinder.results['loss'][-1] = float('nan') after_lr = lrfinder.suggestion() assert before_lr == after_lr, \ 'Learning rate was altered because of non-finite loss values' def test_lr_finder_fails_fast_on_bad_config(tmpdir): """ Test that tune fails if the model does not have a lr BEFORE running lr find """ trainer = Trainer(default_root_dir=tmpdir, max_steps=2, auto_lr_find=True) with pytest.raises(MisconfigurationException, match='should have one of these fields'): trainer.tune(BoringModel()) def test_lr_find_with_bs_scale(tmpdir): """ Test that lr_find runs with batch_size_scaling """ class BoringModelTune(BoringModel): def __init__(self, learning_rate=0.1, batch_size=2): super().__init__() self.save_hyperparameters() model = BoringModelTune() before_lr = model.hparams.learning_rate # logger file to get meta trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, ) bs = trainer.tuner.scale_batch_size(model) lr = trainer.tuner.lr_find(model).suggestion() assert lr != before_lr assert isinstance(bs, int)