lightning/examples/pl_basics/backbone_image_classifier.py

137 lines
4.4 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MNIST backbone image classifier example.
To run: python backbone_image_classifier.py --trainer.max_epochs=50
"""
from os import path
from typing import Optional
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule
from pytorch_lightning.cli import LightningCLI
from pytorch_lightning.demos.mnist_datamodule import MNIST
from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE
if _TORCHVISION_AVAILABLE:
from torchvision import transforms
DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets")
class Backbone(torch.nn.Module):
"""
>>> Backbone() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Backbone(
(l1): Linear(...)
(l2): Linear(...)
)
"""
def __init__(self, hidden_dim=128):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, hidden_dim)
self.l2 = torch.nn.Linear(hidden_dim, 10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = torch.relu(self.l1(x))
x = torch.relu(self.l2(x))
return x
class LitClassifier(LightningModule):
"""
>>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
LitClassifier(
(backbone): ...
)
"""
def __init__(self, backbone: Optional[Backbone] = None, learning_rate: float = 0.0001):
super().__init__()
self.save_hyperparameters(ignore=["backbone"])
if backbone is None:
backbone = Backbone()
self.backbone = backbone
def forward(self, x):
# use forward for inference/predictions
embedding = self.backbone(x)
return embedding
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log("train_loss", loss, on_epoch=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log("valid_loss", loss, on_step=True)
def test_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
self.log("test_loss", loss)
def predict_step(self, batch, batch_idx, dataloader_idx=None):
x, y = batch
return self(x)
def configure_optimizers(self):
# self.hparams available because we called self.save_hyperparameters()
return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
class MyDataModule(LightningDataModule):
def __init__(self, batch_size: int = 32):
super().__init__()
dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor())
self.mnist_test = MNIST(DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor())
self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000])
self.batch_size = batch_size
def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=self.batch_size)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=self.batch_size)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=self.batch_size)
def predict_dataloader(self):
return DataLoader(self.mnist_test, batch_size=self.batch_size)
def cli_main():
cli = LightningCLI(LitClassifier, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False)
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
predictions = cli.trainer.predict(ckpt_path="best", datamodule=cli.datamodule)
print(predictions[0])
if __name__ == "__main__":
cli_lightning_logo()
cli_main()