# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """MNIST backbone image classifier example. To run: python backbone_image_classifier.py --trainer.max_epochs=50 """ from os import path from typing import Optional import torch from torch.nn import functional as F from torch.utils.data import DataLoader, random_split from pytorch_lightning import cli_lightning_logo, LightningDataModule, LightningModule from pytorch_lightning.cli import LightningCLI from pytorch_lightning.demos.mnist_datamodule import MNIST from pytorch_lightning.utilities.imports import _TORCHVISION_AVAILABLE if _TORCHVISION_AVAILABLE: from torchvision import transforms DATASETS_PATH = path.join(path.dirname(__file__), "..", "..", "Datasets") class Backbone(torch.nn.Module): """ >>> Backbone() # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Backbone( (l1): Linear(...) (l2): Linear(...) ) """ def __init__(self, hidden_dim=128): super().__init__() self.l1 = torch.nn.Linear(28 * 28, hidden_dim) self.l2 = torch.nn.Linear(hidden_dim, 10) def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) x = torch.relu(self.l2(x)) return x class LitClassifier(LightningModule): """ >>> LitClassifier(Backbone()) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE LitClassifier( (backbone): ... ) """ def __init__(self, backbone: Optional[Backbone] = None, learning_rate: float = 0.0001): super().__init__() self.save_hyperparameters(ignore=["backbone"]) if backbone is None: backbone = Backbone() self.backbone = backbone def forward(self, x): # use forward for inference/predictions embedding = self.backbone(x) return embedding def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log("train_loss", loss, on_epoch=True) return loss def validation_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log("valid_loss", loss, on_step=True) def test_step(self, batch, batch_idx): x, y = batch y_hat = self(x) loss = F.cross_entropy(y_hat, y) self.log("test_loss", loss) def predict_step(self, batch, batch_idx, dataloader_idx=None): x, y = batch return self(x) def configure_optimizers(self): # self.hparams available because we called self.save_hyperparameters() return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) class MyDataModule(LightningDataModule): def __init__(self, batch_size: int = 32): super().__init__() dataset = MNIST(DATASETS_PATH, train=True, download=True, transform=transforms.ToTensor()) self.mnist_test = MNIST(DATASETS_PATH, train=False, download=True, transform=transforms.ToTensor()) self.mnist_train, self.mnist_val = random_split(dataset, [55000, 5000]) self.batch_size = batch_size def train_dataloader(self): return DataLoader(self.mnist_train, batch_size=self.batch_size) def val_dataloader(self): return DataLoader(self.mnist_val, batch_size=self.batch_size) def test_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size) def predict_dataloader(self): return DataLoader(self.mnist_test, batch_size=self.batch_size) def cli_main(): cli = LightningCLI(LitClassifier, MyDataModule, seed_everything_default=1234, save_config_overwrite=True, run=False) cli.trainer.fit(cli.model, datamodule=cli.datamodule) cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule) predictions = cli.trainer.predict(ckpt_path="best", datamodule=cli.datamodule) print(predictions[0]) if __name__ == "__main__": cli_lightning_logo() cli_main()