lightning/tests/metrics/regression/test_psnr.py

76 lines
2.3 KiB
Python

from collections import namedtuple
from functools import partial
import pytest
import torch
from skimage.metrics import peak_signal_noise_ratio
import numpy as np
from pytorch_lightning.metrics.regression import PSNR
from pytorch_lightning.metrics.functional import psnr
from tests.metrics.utils import BATCH_SIZE, NUM_BATCHES, MetricTester
torch.manual_seed(42)
Input = namedtuple('Input', ["preds", "target"])
_inputs = [
Input(
preds=torch.randint(n_cls_pred, (NUM_BATCHES, BATCH_SIZE), dtype=torch.float),
target=torch.randint(n_cls_target, (NUM_BATCHES, BATCH_SIZE), dtype=torch.float),
)
for n_cls_pred, n_cls_target in [(10, 10), (5, 10), (10, 5)]
]
def _sk_metric(preds, target, data_range):
sk_preds = preds.view(-1).numpy()
sk_target = target.view(-1).numpy()
return peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range)
def _base_e_sk_metric(preds, target, data_range):
sk_preds = preds.view(-1).numpy()
sk_target = target.view(-1).numpy()
return peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range) * np.log(10)
@pytest.mark.parametrize(
"preds, target, data_range",
[
(_inputs[0].preds, _inputs[0].target, 10),
(_inputs[1].preds, _inputs[1].target, 10),
(_inputs[2].preds, _inputs[2].target, 5),
],
)
@pytest.mark.parametrize(
"base, sk_metric",
[
(10.0, _sk_metric),
(2.718281828459045, _base_e_sk_metric),
],
)
class TestPSNR(MetricTester):
@pytest.mark.parametrize("ddp", [True, False])
@pytest.mark.parametrize("dist_sync_on_step", [True, False])
def test_psnr(self, preds, target, data_range, base, sk_metric, ddp, dist_sync_on_step):
self.run_class_metric_test(
ddp,
preds,
target,
PSNR,
partial(sk_metric, data_range=data_range),
metric_args={"data_range": data_range, "base": base},
dist_sync_on_step=dist_sync_on_step,
)
def test_psnr_functional(self, preds, target, sk_metric, data_range, base):
self.run_functional_metric_test(
preds,
target,
psnr,
partial(sk_metric, data_range=data_range),
metric_args={"data_range": data_range, "base": base},
)