from collections import namedtuple from functools import partial import pytest import torch from skimage.metrics import peak_signal_noise_ratio import numpy as np from pytorch_lightning.metrics.regression import PSNR from pytorch_lightning.metrics.functional import psnr from tests.metrics.utils import BATCH_SIZE, NUM_BATCHES, MetricTester torch.manual_seed(42) Input = namedtuple('Input', ["preds", "target"]) _inputs = [ Input( preds=torch.randint(n_cls_pred, (NUM_BATCHES, BATCH_SIZE), dtype=torch.float), target=torch.randint(n_cls_target, (NUM_BATCHES, BATCH_SIZE), dtype=torch.float), ) for n_cls_pred, n_cls_target in [(10, 10), (5, 10), (10, 5)] ] def _sk_metric(preds, target, data_range): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range) def _base_e_sk_metric(preds, target, data_range): sk_preds = preds.view(-1).numpy() sk_target = target.view(-1).numpy() return peak_signal_noise_ratio(sk_target, sk_preds, data_range=data_range) * np.log(10) @pytest.mark.parametrize( "preds, target, data_range", [ (_inputs[0].preds, _inputs[0].target, 10), (_inputs[1].preds, _inputs[1].target, 10), (_inputs[2].preds, _inputs[2].target, 5), ], ) @pytest.mark.parametrize( "base, sk_metric", [ (10.0, _sk_metric), (2.718281828459045, _base_e_sk_metric), ], ) class TestPSNR(MetricTester): @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) def test_psnr(self, preds, target, data_range, base, sk_metric, ddp, dist_sync_on_step): self.run_class_metric_test( ddp, preds, target, PSNR, partial(sk_metric, data_range=data_range), metric_args={"data_range": data_range, "base": base}, dist_sync_on_step=dist_sync_on_step, ) def test_psnr_functional(self, preds, target, sk_metric, data_range, base): self.run_functional_metric_test( preds, target, psnr, partial(sk_metric, data_range=data_range), metric_args={"data_range": data_range, "base": base}, )