lightning/pl_examples/domain_templates/unet.py

123 lines
3.5 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
class UNet(nn.Module):
"""
Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation
Link - https://arxiv.org/abs/1505.04597
Parameters:
num_classes: Number of output classes required (default 19 for KITTI dataset)
num_layers: Number of layers in each side of U-net
features_start: Number of features in first layer
bilinear: Whether to use bilinear interpolation or transposed
convolutions for upsampling.
"""
def __init__(
self, num_classes: int = 19,
num_layers: int = 5,
features_start: int = 64,
bilinear: bool = False
):
super().__init__()
self.num_layers = num_layers
layers = [DoubleConv(3, features_start)]
feats = features_start
for _ in range(num_layers - 1):
layers.append(Down(feats, feats * 2))
feats *= 2
for _ in range(num_layers - 1):
layers.append(Up(feats, feats // 2, bilinear))
feats //= 2
layers.append(nn.Conv2d(feats, num_classes, kernel_size=1))
self.layers = nn.ModuleList(layers)
def forward(self, x):
xi = [self.layers[0](x)]
# Down path
for layer in self.layers[1:self.num_layers]:
xi.append(layer(xi[-1]))
# Up path
for i, layer in enumerate(self.layers[self.num_layers:-1]):
xi[-1] = layer(xi[-1], xi[-2 - i])
return self.layers[-1](xi[-1])
class DoubleConv(nn.Module):
"""
Double Convolution and BN and ReLU
(3x3 conv -> BN -> ReLU) ** 2
"""
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.net(x)
class Down(nn.Module):
"""
Combination of MaxPool2d and DoubleConv in series
"""
def __init__(self, in_ch: int, out_ch: int):
super().__init__()
self.net = nn.Sequential(
nn.MaxPool2d(kernel_size=2, stride=2),
DoubleConv(in_ch, out_ch)
)
def forward(self, x):
return self.net(x)
class Up(nn.Module):
"""
Upsampling (by either bilinear interpolation or transpose convolutions)
followed by concatenation of feature map from contracting path,
followed by double 3x3 convolution.
"""
def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False):
super().__init__()
self.upsample = None
if bilinear:
self.upsample = nn.Sequential(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(in_ch, in_ch // 2, kernel_size=1),
)
else:
self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_ch, out_ch)
def forward(self, x1, x2):
x1 = self.upsample(x1)
# Pad x1 to the size of x2
diff_h = x2.shape[2] - x1.shape[2]
diff_w = x2.shape[3] - x1.shape[3]
x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2])
# Concatenate along the channels axis
x = torch.cat([x2, x1], dim=1)
return self.conv(x)