import torch import torch.nn as nn import torch.nn.functional as F class UNet(nn.Module): """ Architecture based on U-Net: Convolutional Networks for Biomedical Image Segmentation Link - https://arxiv.org/abs/1505.04597 Parameters: num_classes: Number of output classes required (default 19 for KITTI dataset) num_layers: Number of layers in each side of U-net features_start: Number of features in first layer bilinear: Whether to use bilinear interpolation or transposed convolutions for upsampling. """ def __init__( self, num_classes: int = 19, num_layers: int = 5, features_start: int = 64, bilinear: bool = False ): super().__init__() self.num_layers = num_layers layers = [DoubleConv(3, features_start)] feats = features_start for _ in range(num_layers - 1): layers.append(Down(feats, feats * 2)) feats *= 2 for _ in range(num_layers - 1): layers.append(Up(feats, feats // 2, bilinear)) feats //= 2 layers.append(nn.Conv2d(feats, num_classes, kernel_size=1)) self.layers = nn.ModuleList(layers) def forward(self, x): xi = [self.layers[0](x)] # Down path for layer in self.layers[1:self.num_layers]: xi.append(layer(xi[-1])) # Up path for i, layer in enumerate(self.layers[self.num_layers:-1]): xi[-1] = layer(xi[-1], xi[-2 - i]) return self.layers[-1](xi[-1]) class DoubleConv(nn.Module): """ Double Convolution and BN and ReLU (3x3 conv -> BN -> ReLU) ** 2 """ def __init__(self, in_ch: int, out_ch: int): super().__init__() self.net = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.net(x) class Down(nn.Module): """ Combination of MaxPool2d and DoubleConv in series """ def __init__(self, in_ch: int, out_ch: int): super().__init__() self.net = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), DoubleConv(in_ch, out_ch) ) def forward(self, x): return self.net(x) class Up(nn.Module): """ Upsampling (by either bilinear interpolation or transpose convolutions) followed by concatenation of feature map from contracting path, followed by double 3x3 convolution. """ def __init__(self, in_ch: int, out_ch: int, bilinear: bool = False): super().__init__() self.upsample = None if bilinear: self.upsample = nn.Sequential( nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(in_ch, in_ch // 2, kernel_size=1), ) else: self.upsample = nn.ConvTranspose2d(in_ch, in_ch // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_ch, out_ch) def forward(self, x1, x2): x1 = self.upsample(x1) # Pad x1 to the size of x2 diff_h = x2.shape[2] - x1.shape[2] diff_w = x2.shape[3] - x1.shape[3] x1 = F.pad(x1, [diff_w // 2, diff_w - diff_w // 2, diff_h // 2, diff_h - diff_h // 2]) # Concatenate along the channels axis x = torch.cat([x2, x1], dim=1) return self.conv(x)