lightning/tests
Adrian Wälchli ea5cfd2005
move batch to device before sending it to hooks (#7378)
* update train step

* test

* x

* limits

* val

* typeo

* x

* x

* step

* min gpus

* run all loops

* x

* limit test

* profiler

* clean up accelerator code

* move files

* rename

* move tests

* changelog

* reorder callbacks and model hooks

* add test description

* replace unneccessary method

* fix chlog

* adjust batch_to_device for DP Plugin

* update tests for dataloader idx

* unused imports

* hook change

* switch None

* clear memory

* change to None

* None

* None

* memory savings

* remove redundant todo

* hack

* cheat

* Revert "cheat"

This reverts commit a8433bd0b4.

* Revert "hack"

This reverts commit 43a6d1edeb.

* update new epoch loop

* remove from old loop code

* update chlog

* update hook test

* changelog

* teardown

* integrate changes in new eval loop

* fix hook calls

* add prediction step

* bad merge

* Revert "bad merge"

This reverts commit 488080863c.

* fix train batch hook test

* rm -rf _notebooks

* update chlog

* release memory

* fix type

* notebooks mess

* debug

* Revert "debug"

This reverts commit eec4ee2f77.

* teardown

* fix teardown bug

* debug

* x

* debug

* Revert "debug"

This reverts commit a6e6101946.

Revert "debug"

This reverts commit 5ddeaec069.

debug


debug


Revert "debug"

This reverts commit 605be746f7daedf265b2c05a1c153ce543394435.

Revert "Revert "debug""

This reverts commit a7612d5410409ed886cfb609457349ecf44cbfa8.

debug


x


x


x


s


tol


x


tol

* Fix changelog

Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-07-05 09:31:39 +01:00
..
accelerators [IPU] Fix Custom Poptorch options to IPUPlugin (#8241) 2021-07-02 11:23:57 +00:00
base Merge pull request #7872 from PyTorchLightning/refactor/logger-poc-changes 2021-06-08 09:04:16 -04:00
callbacks Support `DDPPlugin` to be used on CPU (#6208) 2021-07-02 12:00:24 +01:00
checkpointing Support `DDPPlugin` to be used on CPU (#6208) 2021-07-02 12:00:24 +01:00
core Add `ModelSummary.max_depth` (#8062) 2021-07-01 12:08:16 +02:00
deprecated_api Deprecate `LightningModule.loaded_optimizer_states_dict` (#8229) 2021-07-01 23:02:29 +02:00
helpers Nuke RPC (#8101) 2021-06-23 18:31:13 +00:00
loggers rename old `Trainer.train_loop` -> `Trainer.fit_loop` (#8025) 2021-06-22 11:49:32 +02:00
loops [feat] Add restore to base loop (#8247) 2021-07-02 13:40:31 +01:00
metrics Add missing logging tests (#8195) 2021-06-29 22:52:50 +00:00
models move batch to device before sending it to hooks (#7378) 2021-07-05 09:31:39 +01:00
overrides Remove unnecessary use of comprehension (#8149) 2021-06-27 10:00:02 +01:00
plugins Support `DDPPlugin` to be used on CPU (#6208) 2021-07-02 12:00:24 +01:00
profiler XLA Profiler integration (#8014) 2021-06-29 00:58:05 +05:30
trainer move batch to device before sending it to hooks (#7378) 2021-07-05 09:31:39 +01:00
tuner Remove unnecessary use of comprehension (#8149) 2021-06-27 10:00:02 +01:00
utilities Add support for optimizers and learning rate schedulers to LightningCLI (#8093) 2021-07-01 12:04:11 +02:00
README.md Delete unused CI scripts (#7152) 2021-04-22 03:07:48 +02:00
__init__.py fixing examples (#6600) 2021-03-20 18:58:59 +00:00
collect_env_details.py add copyright to tests (#5143) 2021-01-05 09:57:37 +01:00
conftest.py Support `DDPPlugin` to be used on CPU (#6208) 2021-07-02 12:00:24 +01:00
mnode_tests.txt Mnodes (#5020) 2021-02-04 20:55:40 +01:00
special_tests.sh XLA Profiler integration (#8014) 2021-06-29 00:58:05 +05:30

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have at least 2 GPUs to run distributed tests.

Note that this setup will not run tests that require specific packages installed such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc. You can rely on our CI to make sure all these tests pass.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4