Delete unused CI scripts (#7152)

This commit is contained in:
Carlos Mocholí 2021-04-22 03:07:48 +02:00 committed by GitHub
parent 99b9dfa883
commit d6470bf193
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 5 additions and 70 deletions

View File

@ -48,9 +48,6 @@ To use 16-bit precision, do two things:
.. code-block:: bash
$ git clone https://github.com/NVIDIA/apex
$ cd apex
# ------------------------
# OPTIONAL: on your cluster you might need to load CUDA 10 or 9
# depending on how you installed PyTorch
@ -65,7 +62,7 @@ To use 16-bit precision, do two things:
# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
$ pip install --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" https://github.com/NVIDIA/apex
.. warning:: NVIDIA Apex and DDP have instability problems. We recommend native 16-bit in PyTorch 1.6+

View File

@ -1,10 +0,0 @@
#!/usr/bin/env bash
ROOT=$PWD
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
# If build with extensions fails, you can run this line to build without extensions
# pip install -v --no-cache-dir ./
cd $ROOT
rm -rf apex

View File

@ -1,41 +0,0 @@
#!/usr/bin/env bash
ROOT=$PWD
# python -m pip install protobuf
# git clone --recursive https://github.com/onnx/onnx.git
# cd onnx
# python setup.py bdist_wheel
# pip install --upgrade dist/*.whl
# cd $ROOT
# rm -rf onnx
# https://github.com/microsoft/onnxruntime/blob/master/BUILD.md
git clone --recursive https://github.com/Microsoft/onnxruntime
cd onnxruntime
export ONNX_ML=1
pip install setuptools wheel numpy
if [[ "$OSTYPE" == "linux-gnu"* ]]; then
./build.sh --config RelWithDebInfo --build_shared_lib --build_wheel --parallel
elif [[ "$OSTYPE" == "darwin"* ]]; then
# Mac OSX
./build.sh --config RelWithDebInfo --build_shared_lib --build_wheel --parallel --use_xcode
elif [[ "$OSTYPE" == "cygwin" ]]; then
# POSIX compatibility layer and Linux environment emulation for Windows
./build.sh --config RelWithDebInfo --build_shared_lib --build_wheel --parallel
elif [[ "$OSTYPE" == "msys" ]]; then
# Lightweight shell and GNU utilities compiled for Windows (part of MinGW)
.\build.bat --config RelWithDebInfo --build_shared_lib --build_wheel --parallel
elif [[ "$OSTYPE" == "win32" ]]; then
.\build.bat --config RelWithDebInfo --build_shared_lib --build_wheel --parallel
else
echo $OSTYPE # Unknown.
fi
find . -name "*.whl"
pip install --upgrade $(find . -name "*.whl")
cd $ROOT
rm -rf onnxruntime

View File

@ -4,21 +4,10 @@ This provides testing for most combinations of important settings.
The tests expect the model to perform to a reasonable degree of testing accuracy to pass.
## Running tests
The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases,
run on a 2-GPU machine to validate the full test-suite.
To run all tests do the following:
Install [Open MPI](https://www.open-mpi.org/) or another MPI implementation. Learn how to install Open MPI [on this page](https://www.open-mpi.org/faq/?category=building#easy-build>).
```bash
git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning
# install AMP support
bash requirements/install_Apex.sh
# install dev deps
pip install -r requirements/devel.txt
@ -27,11 +16,11 @@ py.test -v
```
To test models that require GPU make sure to run the above command on a GPU machine.
The GPU machine must have:
1. At least 2 GPUs.
2. [NVIDIA-apex](https://github.com/NVIDIA/apex#linux) installed.
3. [Horovod with NCCL](https://horovod.readthedocs.io/en/stable/gpus_include.html) support: `HOROVOD_GPU_OPERATIONS=NCCL pip install horovod`
The GPU machine must have at least 2 GPUs to run distributed tests.
Note that this setup will not run tests that require specific packages installed
such as Horovod, FairScale, NVIDIA/apex, NVIDIA/DALI, etc.
You can rely on our CI to make sure all these tests pass.
## Running Coverage
Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.