lightning/pytorch_lightning/loops/fit_loop.py

294 lines
12 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from contextlib import suppress
from typing import Any, Dict, Optional
import pytorch_lightning as pl
from pytorch_lightning.loops import Loop
from pytorch_lightning.loops.epoch import TrainingEpochLoop
from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection
from pytorch_lightning.trainer.supporters import TensorRunningAccum
from pytorch_lightning.utilities import rank_zero_info
log = logging.getLogger(__name__)
class FitLoop(Loop):
"""This Loop iterates over the epochs to run the training
Args:
min_epochs: The minimum number of epochs
max_epochs: The maximum number of epochs
min_steps: The minimum number of steps
max_steps: The maximum number of epoch
.. note::
If neither the minimum epochs nor steps are specified the minimum number of epochs is set to 1
and if neither the maximum steps nor epochs are specified, the maximum epochs are set to 1000.
"""
def __init__(
self,
min_epochs: Optional[int] = None,
max_epochs: Optional[int] = None,
min_steps: Optional[int] = None,
max_steps: Optional[int] = None
):
super().__init__()
self.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs
self.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs
self.epoch_loop = TrainingEpochLoop(min_steps, max_steps)
@property
def current_epoch(self) -> int:
"""Return the current epoch"""
return self.iteration_count
@current_epoch.setter
def current_epoch(self, value: int) -> None:
"""Setter for the current epoch"""
self.iteration_count = value
@property
def global_step(self) -> int:
"""Returns the global step"""
return self.epoch_loop.global_step
@global_step.setter
def global_step(self, value: int) -> None:
"""Sets the global step (forwards to epoch_loop)"""
self.epoch_loop.global_step = value
@property
def total_batch_idx(self) -> int:
"""Returns the total number of batches already run (across all epochs)"""
return self.epoch_loop.total_batch_idx
@property
def batch_idx(self) -> int:
"""Returns the number of batches already run within this epoch"""
return self.epoch_loop.iteration_count
@property
def split_idx(self) -> int:
"""Returns the index of the current batch split (within the current batch) for bptt"""
return self.epoch_loop.split_idx
@property
def min_steps(self) -> int:
# TODO(@justusschock): Why aren't we using the attribute in this class?
"""Returns the minimum numnber of steps to run"""
return self.epoch_loop.min_steps
@min_steps.setter
def min_steps(self, value: int) -> None:
"""Sets the minimum number of steps (forwards to epoch_loop)"""
# TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
self.epoch_loop.min_steps = value
@property
def max_steps(self) -> int:
"""Returns the maximum number of steps to run"""
return self.epoch_loop.max_steps
@max_steps.setter
def max_steps(self, value: int) -> None:
"""Sets the maximum number of steps (forwards to epoch_loop)"""
# TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided
self.epoch_loop.max_steps = value
@property
def running_loss(self) -> TensorRunningAccum:
"""Returns the running loss"""
return self.epoch_loop.batch_loop.running_loss
@property
def _skip_backward(self) -> bool:
""" Determines whether the loop will skip backward during automatic optimization. """
return self.epoch_loop.batch_loop._skip_backward
@_skip_backward.setter
def _skip_backward(self, value: bool) -> None:
""" Determines whether the loop will skip backward during automatic optimization. """
self.epoch_loop.batch_loop._skip_backward = value
@property
def _results(self) -> ResultCollection:
if self.trainer.training:
return self.epoch_loop._results
if self.trainer.validating:
return self.epoch_loop.val_loop._results
raise RuntimeError("`FitLoop._results` property isn't defined. Accessed outside of scope")
@property
def done(self) -> bool:
"""Evaluates when to leave the loop.
Returns True if trainer.should_stop was set (e.g. by early stopping)
or if the maximum number of steps or epochs is reached.
"""
# TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop
stop_steps = self.max_steps is not None and self.global_step >= self.max_steps
stop_epochs = self.max_epochs is not None and self.current_epoch >= self.max_epochs
should_stop = False
if self.trainer.should_stop:
# early stopping
met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True
met_min_steps = self.global_step >= self.min_steps if self.min_steps else True
if met_min_epochs and met_min_steps:
should_stop = True
else:
log.info(
'Trainer was signaled to stop but required minimum epochs'
f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has'
' not been met. Training will continue...'
)
self.trainer.should_stop = should_stop
return stop_steps or should_stop or stop_epochs
@property
def skip(self) -> bool:
"""Whether we should skip the training and immediately return from the call to :meth:`run`."""
return self.done or self.trainer.num_training_batches == 0
def connect(self, trainer: 'pl.Trainer', *args: Any, **kwargs: Any) -> None:
"""Connects the loop with necessary arguments like the trainer"""
super().connect(trainer, *args, **kwargs)
self.epoch_loop.connect(trainer)
def reset(self) -> None:
"""Resets the internal state of this loop"""
def on_run_start(self) -> None:
"""Calls the ``on_train_start`` hook."""
self._results.to(device=self.trainer.lightning_module.device)
self.trainer.call_hook("on_train_start")
def on_advance_start(self) -> None:
"""Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and ``on_train_epoch_start``"""
model = self.trainer.lightning_module
# reset train dataloader
if self.current_epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
self.trainer.reset_train_dataloader(model)
# TODO: specify the possible exception
with suppress(Exception):
# set seed for distributed sampler (enables shuffling for each epoch)
self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch)
# changing gradient according accumulation_scheduler
self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)
# stores accumulated grad fractions per batch
self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum(
window_length=self.trainer.accumulate_grad_batches
)
def advance(self) -> None:
"""Runs one whole epoch."""
train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader)
train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)
with self.trainer.profiler.profile("run_training_epoch"):
# run train epoch
epoch_output = self.epoch_loop.run(train_dataloader)
if epoch_output is None:
return
# the global step is manually decreased here due to backwards compatibility with existing loggers
# as they expect that the same step is used when logging epoch end metrics even when the batch loop has
# finished. this means the attribute does not exactly track the number of optimizer steps applied.
# TODO(@carmocca): deprecate and rename so users don't get confused
self.global_step -= 1
# log epoch metrics
self.trainer.logger_connector.update_train_epoch_metrics()
self.global_step += 1
def on_advance_end(self) -> None:
"""Updates the LR schedulers and does some internal bookkeeping"""
if self.epoch_loop.batches_seen == 0:
return
self.epoch_loop.update_lr_schedulers('epoch', update_plateau_schedulers=True)
did_train_only = self.trainer.disable_validation or self.epoch_loop.val_loop.skip
if did_train_only:
self.global_step -= 1
self._check_checkpoint_callback(True)
self.global_step += 1
def on_run_end(self) -> None:
"""Calls the ``on_train_end`` hook"""
# NOTE: the iteration_count/current_epoch is already incremented
# Lightning today does not increment the current epoch at the last epoch run in Trainer.fit
# To simulate that current behavior, we decrement here.
# TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007
self.current_epoch -= 1
# trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
# when a checkpoint was saved at the last step
self.epoch_loop.global_step -= 1
# TODO: see discussion/rework https://github.com/PyTorchLightning/pytorch-lightning/issues/7406
self._check_checkpoint_callback(should_update=True, is_last=True)
self.epoch_loop.global_step += 1
# hook
self.trainer.call_hook("on_train_end")
# todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
# It might be related to xla tensors blocked when moving the cpu
# kill loggers
if self.trainer.logger is not None:
self.trainer.logger.finalize("success")
# summarize profile results
self.trainer.profiler.describe()
# give accelerators a chance to finish
self.trainer.accelerator.on_train_end()
def should_accumulate(self) -> bool:
"""Whether the gradients should be accumulated"""
return self.epoch_loop.batch_loop.should_accumulate()
def _check_checkpoint_callback(self, should_update: bool, is_last: bool = False):
"""Checks if checkpointing needs to be done"""
# TODO: bake this logic into the ModelCheckpoint callback
if should_update and self.trainer.checkpoint_connector.has_trained:
callbacks = self.trainer.checkpoint_callbacks
if is_last and any(cb.save_last and cb.verbose for cb in callbacks):
rank_zero_info("Saving latest checkpoint...")
model = self.trainer.lightning_module
for cb in callbacks:
cb.on_validation_end(self.trainer, model)
def state_dict(self) -> Dict:
return {"epoch_loop": self.epoch_loop.state_dict()}
def load_state_dict(self, state_dict: Dict) -> None:
self.epoch_loop.load_state_dict(state_dict["epoch_loop"])
def teardown(self) -> None:
self.epoch_loop.teardown()