# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from contextlib import suppress from typing import Any, Dict, Optional import pytorch_lightning as pl from pytorch_lightning.loops import Loop from pytorch_lightning.loops.epoch import TrainingEpochLoop from pytorch_lightning.trainer.connectors.logger_connector.result import ResultCollection from pytorch_lightning.trainer.supporters import TensorRunningAccum from pytorch_lightning.utilities import rank_zero_info log = logging.getLogger(__name__) class FitLoop(Loop): """This Loop iterates over the epochs to run the training Args: min_epochs: The minimum number of epochs max_epochs: The maximum number of epochs min_steps: The minimum number of steps max_steps: The maximum number of epoch .. note:: If neither the minimum epochs nor steps are specified the minimum number of epochs is set to 1 and if neither the maximum steps nor epochs are specified, the maximum epochs are set to 1000. """ def __init__( self, min_epochs: Optional[int] = None, max_epochs: Optional[int] = None, min_steps: Optional[int] = None, max_steps: Optional[int] = None ): super().__init__() self.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs self.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs self.epoch_loop = TrainingEpochLoop(min_steps, max_steps) @property def current_epoch(self) -> int: """Return the current epoch""" return self.iteration_count @current_epoch.setter def current_epoch(self, value: int) -> None: """Setter for the current epoch""" self.iteration_count = value @property def global_step(self) -> int: """Returns the global step""" return self.epoch_loop.global_step @global_step.setter def global_step(self, value: int) -> None: """Sets the global step (forwards to epoch_loop)""" self.epoch_loop.global_step = value @property def total_batch_idx(self) -> int: """Returns the total number of batches already run (across all epochs)""" return self.epoch_loop.total_batch_idx @property def batch_idx(self) -> int: """Returns the number of batches already run within this epoch""" return self.epoch_loop.iteration_count @property def split_idx(self) -> int: """Returns the index of the current batch split (within the current batch) for bptt""" return self.epoch_loop.split_idx @property def min_steps(self) -> int: # TODO(@justusschock): Why aren't we using the attribute in this class? """Returns the minimum numnber of steps to run""" return self.epoch_loop.min_steps @min_steps.setter def min_steps(self, value: int) -> None: """Sets the minimum number of steps (forwards to epoch_loop)""" # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided self.epoch_loop.min_steps = value @property def max_steps(self) -> int: """Returns the maximum number of steps to run""" return self.epoch_loop.max_steps @max_steps.setter def max_steps(self, value: int) -> None: """Sets the maximum number of steps (forwards to epoch_loop)""" # TODO(@awaelchli): This setter is required by debugging connector (fast dev run), should be avoided self.epoch_loop.max_steps = value @property def running_loss(self) -> TensorRunningAccum: """Returns the running loss""" return self.epoch_loop.batch_loop.running_loss @property def _skip_backward(self) -> bool: """ Determines whether the loop will skip backward during automatic optimization. """ return self.epoch_loop.batch_loop._skip_backward @_skip_backward.setter def _skip_backward(self, value: bool) -> None: """ Determines whether the loop will skip backward during automatic optimization. """ self.epoch_loop.batch_loop._skip_backward = value @property def _results(self) -> ResultCollection: if self.trainer.training: return self.epoch_loop._results if self.trainer.validating: return self.epoch_loop.val_loop._results raise RuntimeError("`FitLoop._results` property isn't defined. Accessed outside of scope") @property def done(self) -> bool: """Evaluates when to leave the loop. Returns True if trainer.should_stop was set (e.g. by early stopping) or if the maximum number of steps or epochs is reached. """ # TODO(@awaelchli): Move track steps inside training loop and move part of these condition inside training loop stop_steps = self.max_steps is not None and self.global_step >= self.max_steps stop_epochs = self.max_epochs is not None and self.current_epoch >= self.max_epochs should_stop = False if self.trainer.should_stop: # early stopping met_min_epochs = self.current_epoch >= self.min_epochs if self.min_epochs else True met_min_steps = self.global_step >= self.min_steps if self.min_steps else True if met_min_epochs and met_min_steps: should_stop = True else: log.info( 'Trainer was signaled to stop but required minimum epochs' f' ({self.min_epochs}) or minimum steps ({self.min_steps}) has' ' not been met. Training will continue...' ) self.trainer.should_stop = should_stop return stop_steps or should_stop or stop_epochs @property def skip(self) -> bool: """Whether we should skip the training and immediately return from the call to :meth:`run`.""" return self.done or self.trainer.num_training_batches == 0 def connect(self, trainer: 'pl.Trainer', *args: Any, **kwargs: Any) -> None: """Connects the loop with necessary arguments like the trainer""" super().connect(trainer, *args, **kwargs) self.epoch_loop.connect(trainer) def reset(self) -> None: """Resets the internal state of this loop""" def on_run_start(self) -> None: """Calls the ``on_train_start`` hook.""" self._results.to(device=self.trainer.lightning_module.device) self.trainer.call_hook("on_train_start") def on_advance_start(self) -> None: """Prepares the dataloader for training and calls the hooks ``on_epoch_start`` and ``on_train_epoch_start``""" model = self.trainer.lightning_module # reset train dataloader if self.current_epoch != 0 and self.trainer.reload_dataloaders_every_epoch: self.trainer.reset_train_dataloader(model) # TODO: specify the possible exception with suppress(Exception): # set seed for distributed sampler (enables shuffling for each epoch) self.trainer.train_dataloader.sampler.set_epoch(self.current_epoch) # changing gradient according accumulation_scheduler self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module) # stores accumulated grad fractions per batch self.epoch_loop.batch_loop.accumulated_loss = TensorRunningAccum( window_length=self.trainer.accumulate_grad_batches ) def advance(self) -> None: """Runs one whole epoch.""" train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader) train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader) with self.trainer.profiler.profile("run_training_epoch"): # run train epoch epoch_output = self.epoch_loop.run(train_dataloader) if epoch_output is None: return # the global step is manually decreased here due to backwards compatibility with existing loggers # as they expect that the same step is used when logging epoch end metrics even when the batch loop has # finished. this means the attribute does not exactly track the number of optimizer steps applied. # TODO(@carmocca): deprecate and rename so users don't get confused self.global_step -= 1 # log epoch metrics self.trainer.logger_connector.update_train_epoch_metrics() self.global_step += 1 def on_advance_end(self) -> None: """Updates the LR schedulers and does some internal bookkeeping""" if self.epoch_loop.batches_seen == 0: return self.epoch_loop.update_lr_schedulers('epoch', update_plateau_schedulers=True) did_train_only = self.trainer.disable_validation or self.epoch_loop.val_loop.skip if did_train_only: self.global_step -= 1 self._check_checkpoint_callback(True) self.global_step += 1 def on_run_end(self) -> None: """Calls the ``on_train_end`` hook""" # NOTE: the iteration_count/current_epoch is already incremented # Lightning today does not increment the current epoch at the last epoch run in Trainer.fit # To simulate that current behavior, we decrement here. # TODO: must be fixed by https://github.com/PyTorchLightning/pytorch-lightning/issues/5007 self.current_epoch -= 1 # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates # when a checkpoint was saved at the last step self.epoch_loop.global_step -= 1 # TODO: see discussion/rework https://github.com/PyTorchLightning/pytorch-lightning/issues/7406 self._check_checkpoint_callback(should_update=True, is_last=True) self.epoch_loop.global_step += 1 # hook self.trainer.call_hook("on_train_end") # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers. # It might be related to xla tensors blocked when moving the cpu # kill loggers if self.trainer.logger is not None: self.trainer.logger.finalize("success") # summarize profile results self.trainer.profiler.describe() # give accelerators a chance to finish self.trainer.accelerator.on_train_end() def should_accumulate(self) -> bool: """Whether the gradients should be accumulated""" return self.epoch_loop.batch_loop.should_accumulate() def _check_checkpoint_callback(self, should_update: bool, is_last: bool = False): """Checks if checkpointing needs to be done""" # TODO: bake this logic into the ModelCheckpoint callback if should_update and self.trainer.checkpoint_connector.has_trained: callbacks = self.trainer.checkpoint_callbacks if is_last and any(cb.save_last and cb.verbose for cb in callbacks): rank_zero_info("Saving latest checkpoint...") model = self.trainer.lightning_module for cb in callbacks: cb.on_validation_end(self.trainer, model) def state_dict(self) -> Dict: return {"epoch_loop": self.epoch_loop.state_dict()} def load_state_dict(self, state_dict: Dict) -> None: self.epoch_loop.load_state_dict(state_dict["epoch_loop"]) def teardown(self) -> None: self.epoch_loop.teardown()