85 lines
2.2 KiB
Python
85 lines
2.2 KiB
Python
import pytest
|
|
from tests.base import SimpleModule
|
|
from pytorch_lightning.trainer import Trainer
|
|
|
|
|
|
@pytest.mark.parametrize('max_epochs', [1, 2, 3])
|
|
def test_val_check_interval_1(tmpdir, max_epochs):
|
|
|
|
class TestModel(SimpleModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.train_epoch_calls = 0
|
|
self.val_epoch_calls = 0
|
|
|
|
def on_train_epoch_start(self) -> None:
|
|
self.train_epoch_calls += 1
|
|
|
|
def on_validation_epoch_start(self) -> None:
|
|
if not self.trainer.running_sanity_check:
|
|
self.val_epoch_calls += 1
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
max_epochs=max_epochs,
|
|
val_check_interval=1.0,
|
|
logger=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert model.val_epoch_calls == max_epochs
|
|
|
|
|
|
@pytest.mark.parametrize('max_epochs', [1, 2, 3])
|
|
def test_val_check_interval_quarter(tmpdir, max_epochs):
|
|
|
|
class TestModel(SimpleModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.train_epoch_calls = 0
|
|
self.val_epoch_calls = 0
|
|
|
|
def on_train_epoch_start(self) -> None:
|
|
self.train_epoch_calls += 1
|
|
|
|
def on_validation_epoch_start(self) -> None:
|
|
if not self.trainer.running_sanity_check:
|
|
self.val_epoch_calls += 1
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
max_epochs=max_epochs,
|
|
val_check_interval=0.25,
|
|
logger=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert model.val_epoch_calls == max_epochs * 4
|
|
|
|
|
|
@pytest.mark.parametrize('max_epochs', [1, 2, 3])
|
|
def test_val_check_interval_third(tmpdir, max_epochs):
|
|
|
|
class TestModel(SimpleModule):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.train_epoch_calls = 0
|
|
self.val_epoch_calls = 0
|
|
|
|
def on_train_epoch_start(self) -> None:
|
|
self.train_epoch_calls += 1
|
|
|
|
def on_validation_epoch_start(self) -> None:
|
|
if not self.trainer.running_sanity_check:
|
|
self.val_epoch_calls += 1
|
|
|
|
model = TestModel()
|
|
trainer = Trainer(
|
|
max_epochs=max_epochs,
|
|
val_check_interval=0.33,
|
|
logger=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert model.val_epoch_calls == max_epochs * 3
|