import pytest from tests.base import SimpleModule from pytorch_lightning.trainer import Trainer @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_1(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=1.0, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_quarter(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=0.25, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs * 4 @pytest.mark.parametrize('max_epochs', [1, 2, 3]) def test_val_check_interval_third(tmpdir, max_epochs): class TestModel(SimpleModule): def __init__(self): super().__init__() self.train_epoch_calls = 0 self.val_epoch_calls = 0 def on_train_epoch_start(self) -> None: self.train_epoch_calls += 1 def on_validation_epoch_start(self) -> None: if not self.trainer.running_sanity_check: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( max_epochs=max_epochs, val_check_interval=0.33, logger=False, ) trainer.fit(model) assert model.val_epoch_calls == max_epochs * 3